
Compression of minimal acyclic deterministic FSAs  

preserving the linear accepting complexity 

 
Kalin Georgiev 

Faculty of Mathematics and Informatics, Sofia University 

5 Bourchier str. 

Sofia, 1164 

kalin.georgiev@fmi.uni-sofia.bg 

 

 

Abstract 

In this paper we investigate the possibility to take 

advantage of the isomorphic sub graphs that can be found in 

the structure of minimal FSAs in order to achieve smaller 

volumes of their memory representations. We introduce a new 

abstract machine – Recursive Automaton – similar to the 

Recursive Transition Networks, which we utilize to accept the 

language of the initial FSA while some of the largest 

isomorphic sub graphs of that FSA are merged in a single sub 

graph. We also investigate the properties of the new machine, 

the languages it accepts and the formal grammar equivalent to 

that machine. We’ve shown that the class of languages 

accepted by recursive automatons is strictly between LL(1) 

and LR(1). 

Keywords 
Finite State Automatons, Formal Grammars, Compression 

1. Introduction 
If we consider the minimal acyclic deterministic FSAs as 

directed graphs, in the majority of cases we can observe a 

significant number of isomorphic sub graphs. In this work 

we present a new formal machine named Recursive 

Automaton, similar to the FSAs. The additional properties 

of RAs allow a class of isomorphic sub graphs to be 

“merged” in a single representative of the class. The new 

property of recursive automatons are the recursive 

transitions which are used to make a “call” to a sub 

automaton.  

The properties of the recursive automatons are 

investigated. A class of formal grammars equivalent to the 

recursive automatons is characterized. The class of 

languages which are accepted by recursive automatons is 

shown to be strictly larger than LL(1) and strictly smaller 

than LR(1). 

The presented compression algorithm has two major 

aspects. First, we identify isomorphic sub graphs of the 

initial FSA. We define a relation mergeability which sets 

the conditions under which two isomorphic sub graphs can 

be merged. We apply a greedy algorithm to construct a set 

of classes of mergeable sub graphs. Second, we apply a 

merging algorithm, which transforms the initial FSA into a 

recursive automaton, accepting the same language, but with 

a smaller number of states and transitions. The time 

complexity of accepting a word by a recursive automaton is 

linear amortized.  

The experimental results show up to 8% reduction of 

the number of states and transitions for FSAs, built to 

accept natural language dictionaries, and up to 70% 

reduction for FSAa accepting bibliographic dictionaries. 

This paper is a summary of the author’s master’s thesis.  

Most of the major results are cited here but proofs are not 

provided.  

2. Recursive Automatons 

2.1 Definition 
In this section we define the Recursive Automaton and its 

execution over an input word.  

Definition. By Recursive Automaton we denote 

0, , , , ,A Q q r Fδ= Σ , where Σ  is a finite alphabet, Q  

is a finite set of states, 0q Q∈  is the initial state, 

: Q Qδ ×Σ→  and :r Q Q→  are partial functions, and 

F Q⊆ . ⁭ 

The new property :r Q Q→  defines the recursive 

transitions in A. Recursive transitions are applied when a 

call needs to be done to a sub automaton of A. As in a 

computer program, after a call is completed then the 

execution of A returns to the caller state. To define strictly 

the operation of this machine we’ll introduce 

Definition. Let A be a recursive automaton and 

{ }| :F f f Q Q+ += →  be the set of partial functions in 

Q+
. By AΓ  we denote the operator :A F FΓ →  defined 

by:  

( ) ( )
( )

( )( )
0

0

0

... if !
...

... otherwise

k k

A k

k k

q q r q
f q q

f r q q q

 ¬
Γ = 


.⁭ 

Lemma. AΓ  is continuous.  



This is easily proven by showing that AΓ  is 

monotonous and finite.⁭ 

A word from Q+
 can be considered as the current 

stack of the recursive automaton. The smallest fixed point 

AC  of AΓ  is the “stack winder” of the recursive 

automaton. It traverses the longest path of recursive 

transitions starting from the top of the stack and pushes all 

the states it passes. Let  

( ) ( ) ( ) ( ){ }, , ' | ! 'rG A Q q q r q r q q= ∧ =   

be the graph of recursive transitions in A. We can 

characterize the domain of AC . 

Lemma. ( )! AC ω  for every 0... k Qω ω ω += ∈  such 

that 0ω  can not be found in any cycle in ( )rG A . On the 

other hand, we have ( )! AC ω¬  for every 0ω  which is a 

part of a cycle. ⁭ 

Finally, we re ready to define the operation of A. 

Definition. Let : Q Q+ +∆ ×Σ→  be defined by: 

( )
( )( ) ( )1 0

0

' ... if , '
... ,

! otherwise

k k

k

R C q q q q c q
q q c

δ−


∆ = 
¬

≃
 

where 

( )
( )( )

( )
0

0

1 0

... if ! , 0
...

.. otherwise

k k

k

k

q q c q c k
R q q

R q q

δ

−

 ∃ ∨ =
= 


 

and C  is the smallest fixed point of AΓ .⁭ 

The function R is the antipode of AC . It “unwinds” the 

stack until a state is reached that actually accepts symbols 

from the input alphabet. 

Definition. Let 
* : Q Q+ + +∆ ×Σ →  be defined by: 

( )
( )

( )( )
0*

0 *

0 1

, 0
, ...

, , ..
n

n

s a n
s a a

s a a a ow

∆ =
∆ = ∆ ∆

 

Then we say that A accepts ω +∈Σ  iff ( )*

0! ,q ω∆  

and ( )*

0 , ,q q q Fω∆ = ∈ .⁭ 

An execution of A over a word 1.. ka aω += ∈Σ  is 

the sequence 0 ,.., ks s  of words from Q+
, where 0 0s q=  

and 

 ( ) ( )( )1 1 10 ! , ,i i i i ii k s a s s a+ + +∀ ≤ < ∆ ∧ = ∆ .  

A successful execution is every execution for which ks  

is a single character from F . An alternative and equivalent 

definition of accepting would imply that there exists a 

successful execution over ω . The language of A is 

( ) ( ){ }*

0| , ,L A q q q Fω ω+= ∈Σ ∆ = ∈ . 

To demonstrate the operation of a recursive automaton, 

let us consider Figure 1. 

 
Figure 1. 

 

Figure 1 shows a recursive automaton A. Its initial state 

is 0, 2 is its single final state, the solid lines indicate 

“ordinary” transitions and the dashed line indicates the 

single recursive transition in A. The execution of A over 

“aaacbbb” is the sequence: “0”, ”10”, ”110”, ”1110”, 

”111”,”11”, “1”, “2”. Before “c” comes at the input we 

have the configuration ”1110”.  The next configuration is 

( ) ( )( )1110, 1112c R C∆ = . But ( )1112 1112C =  

since there are no recursive transitions going out of 2. The 

state 2 has no ordinary transitions either, so 

( )1112 111R = . We can see that the accepting 

complexity is amortized linear, where the amortization 

comes from the additional steps that sometimes C and R 

have to perform. 

The language of A on Figure 1 is { }|i ia cb i N +∈ . 

2.2 Normal recursive automatons 
In this section we will introduce some restrictions to the 

recursive automatons which will not affect the class of 

accepted languages but will make further investigations 

easier.   

There are three kinds of states which we will forbid. 

The first kind are the states q  such that 

( ) ( )( )! ! ,r q c q cδ∧∀ ¬ . There are recursive transitions 

going out of these states but no ordinary transitions. Such 

states will never be left on the top of the stack by R (unless 

they are the only state in the stack), so they can’t affect the 

execution essentially. The second kind of states are the 

states q  such that ( )( ) ( )( )' ' ! ,q r q q c q cδ∃ = ∧∀ ¬ . 

These states are pointed by recursive transitions but again 

do not have ordinary transitions going out of them. They 

are also redundant. And finally, the states q  such that they 

do not participate in any execution over any word, or 

0 

2 

1 

c b 

a 



( ) ( )( )*

0 1 1
, .. .. , , 0

k l
q a a qb b k lω ω∗¬ ∃ ∈Σ ∆ = ≥ , will 

also be forbidden. 

Definition. By normal recursive automaton we will 

denote any recursive automaton which has not forbidden 

states.⁭ 

Theorem. For every recursive automaton A there exists 

a normal recursive automaton A’ such that 

( ) ( )'L A L A= .⁭ 

Although straightforward, the proof of this theorem is 

rather long and tedious so we will spare it in this paper, as 

we will do with most of the proofs. 

Further in all sections we will assume that all recursive 

automatons are normal. 

3. RA Grammars 
In this section we will introduce a class of formal grammars 

which we call RA grammars.  

Definition. A formal grammar , , ,N T S PΓ =  is 

called an RA Grammar if: (1) Every rule Pγ ∈  has either 

the form A a→  or A aω→  where a T∈  and 

Nω +∈ ; (2) For every A N∈  and a T∈  there are no 

more than two rules of the form A aω→  in P, where 
*Nω∈ ; (3) If there are two rules A aω→  and 

'A aω→  in P, then ' Bω ω= , B N∈  and for every 

left sentential form 1... mβ β  of Γ  we 

have ( )( )1 jj j m Aβ∀ ≤ < ≠ , i.e. A is never a right-

most non-terminal symbol in the left sentential forms of Γ . 

⁭ 

Definition. We say that a recursive automaton A and 

an RA grammar Γ  are equivalent, denoted by ( ),eq A Γ , 

if Γ  can be presented in the form 

0
, , ,q rfN N A P P PΓ = Σ∪ ∪ ∪ , where  

{ }|qN A q Q= ∈ , 

{ }|qN A q Q= ∈ , 

( ) ( ){ }1 1 1... | , ' ' ..
m

m
q qq q mP А aA A A q a q C q q qδ−= → = ∧ =  

( ) ( ) ( ){ }| , ' ! ', ! 'qA a q a q c q c r qδ δ→ = ∧∀ ¬ ∧¬∪

( ){ }1 1 1 1... | .. !rf k k qP A A A P q F r qα α α α− −= → → ∈ ∧ ∈ ∧  

⁭ 

Lemma. For every A and Γ , ( ),eq A Γ  leads to 

( ) ( )L A L= Γ .⁭ 

Lemma. For every recursive automaton A there exists 

an RA grammar Γ  such that ( ),eq A Γ .⁭  

Lemma. For every RA grammar Γ  there exists a 

recursive automaton A such that ( ), 'eq A Γ , where 'Γ  is 

equivalent to Γ .⁭ 

All these lead to 

Theorem. The class of languages generated by RA 

grammars is the same as the class of languages accepted by 

recursive automatons. We call these languages RA 

languages.⁭ 

For example, consider the automaton on Figure 2. 

 
Figure 2. 

The language accepted by this automaton is: 

{ }(1), (3), (5)ade adebc adebce  (the number indicates 

the final state where the execution ends). The RA grammar 

which is equivalent to that automaton consists of the rules: 

20 1A aA A→ , 20A a A→ , 2 3A d A→ , 3A e→ , 

1 4A bA→ , 4A c→ , 4 3A cA→ , 3A e→  (some 

redundant rules are omitted).  

For the automaton on Figure 1 we have the rules: 

S aSA→ , S c→ , A b→ . 

We can continue with a classification of the RA 

grammars.  

Lemma. Every RA language is an LR(0) language. ⁭ 

Lemma. Every LL(1) language is an RA language. ⁭ 

4. Detaching a sub automaton 
The recursive transitions enable states to indicate that a 

“call” must be made to another state, remembering the 

caller state. The process is analogous to subroutines of a 

computer program calling each other. The analogy to a 

computer program can be extended further, to reveal the 

idea of merging sub automatons. 

Imagine a computer program being a single routine 

which consists of a sequence of operators. Let there be two 

non overlapping segments of the program which are 

syntactically and semantically equivalent. If we create a 

new subroutine with the same effect as these segments then 

we may replace both segments with a call to that 

subroutine. In most cases this will reduce the length of the 

program while adding insignificant time for its execution. 

We will apply exactly the same approach to the recursive 

automatons. 

0 

2 

1 4 

3 

a b 

c 

d e 
5 



We consider every subset of the set of states Q of a 

given recursive automaton A as a “sub automaton” of A. 

Unlike a computer program where the sequence of 

operators being moved to a separate function could be 

simply deleted and replaced by a function call, “moving” a 

sub automaton P to a separate location needs additional 

work. These operations adjust the “boundary” states of P – 

the states that are outside P but link to P by recursive or by 

ordinary transitions. In a computer program, the boundary 

operator of a program segment is single – the operator just 

before the segment, while in an automaton there might be a 

large number of boundary states. 

We can see from the definition of R that when a call is 

made in a recursive automaton, the execution “returns” to 

the caller when a state with no outgoing ordinary transitions 

is reached. We will call such states “returning states”. With 

the intuition about what merging of sub automatons is and 

why detaching is necessary we carry on with the strict 

definitions of the process. 

Definition. By end of the sub automaton P of the 

recursive automaton 0, , , , ,A Q q r Fδ= Σ  we will 

denote the set  

( )( ){ }' '| , ,P pEnd q c q c q q Pδ= ∃ = ∉ . 

and by returning states of P the set  

( ){ }| ! ,P pR q P c q cδ= ∈ ∀ ¬ . 

Here pδ  is the restriction of δ  over P×Σ . Finally 

P P PExit E R= ∪ .⁭ 

Definition. A sub automaton P of a recursive 

automaton is called detachable if { }P eExit q= is a 

singleton, ( )( ),ec q c Pδ∀ ∉ , ( )( )eq Q r q q∀ ∈ ≠ , 

( )( ), eq P c q c qδ∀ ∉ ∀ ≠ , PF P Exit⊆∩ , 

PP Exit− ≠ ∅  and 0q P∉ .⁭ 

Detaching a sub automaton P for which eq  is not 

returning is a technically more complicated procedure than 

the case when eq  is returning. The idea is demonstrated on 

Figure 3a and 3b. 

 
Figure 3a and 3b. 

Figure 3a displays a sub automaton P with a non-

returning exit state which is being pointed by two boundary 

states. The transformed P is shown on figure 3b, where a 

new state is added for each boundary state. The new states 

copy the transitions outgoing from the exit state, while these 

transitions are removed from the exit state. Finally, the new 

states point to P with a recursive transition.  

The purpose of these operations is to separate P from 

the outer world by surrounding it only with recursive 

transitions, while the transitions going out of P are 

removed. This makes the moving of P possible. Formally 

Definition. Let P be a detachable sub automaton of A 

such that { }P PEnd e= . By termination of P we will 

denote the operation 

 ( ), , , , ', ,sTerm A P Q q r Fδ= Σ ,  

where ( ){ }' \ , , 'eq c qδ δ δ= ∈ .⁭ 

Definition. Let P be a detachable sub automaton of A 

such that { }P PEnd e= , , ,q q c−∃  \q Q P∈ , q P− ∈ , 

( ),q c qδ −= . If 1,..., kq q  are all states outside P such 

that  ( )( ),ic q c qδ −∃ = , 1,...,i k= , by E δ− -division 

of _q  we will denote the operation  

( ) { }, , , , , ', ',e n ss A P q Q q q r Fδ δ− = Σ ∪ ,  

where nq Q∉ , 

( ){ }' \ , , | 1,...,iq c q i kδ δ δ−= ∈ = ∪

( ) ( ){ }, , | , , , 1,...,i n iq c q q c q i kδ− ∈ =

( ) ( ){ }, , | , ,n Oq c q q c q δ∈∪ , 

( ){ }' ,nr r q q−= ∪ , 

e

n e

q F
F F

q q F

∅ ∉
= 

∈
∪ .⁭ 

 

Definition. Let P be a detachable sub automaton of A 

such that { }P PEnd e=  and 1,.., kq q  are all different 

states such that iq P∈ , ( )( ), ' ', ic q P q c qδ∃ ∉ =  for 

every 1,...,i k= . Let 0 1, ,..., kA A A  be a sequence of 

recursive automatons such that 0A A= , and 1,...,i k∀ =  

( )1, ,i e i iA s A P qδ
−= . Then ( ),e kS P A Aδ =  is the δ -

division of P. ⁭ 

Definition. Let P be a detachable sub automaton of A 

such that { }P PEnd e= , , ,q q c−∃ q P− ∈ , ( )r q q−= . 

If 1,..., kq q  are all different states such that ( )ir q q−=  

for 1,...,i k= , then E r− -division of P is the operation 

( ) { } 0, , , , , ', ',r

e ns A P q Q q q r Fδ− = Σ ∪ , where  



nq Q∉ , 'δ δ= ∪  ( ) ( ){ }, , | , ,n eq c q q c q δ∈ , 

( ){ } ( ){ }' \ , | 1,..., , | 1,...,i i nr r q q i k q q i k−= = =∪

( ){ },nq q−∪ .⁭ 

Definition. Let P be a detachable sub automaton of A 

such that { }P PEnd e=  and 1,.., kq q  are all different 

states such that  ( )( )iq r q q∃ =  for every 1,...,i l= . Let 

0 1, ,..., kA A A  be a sequence of recursive automatons such 

that 0A A= , and 1,...,i k∀ =  ( )1, ,r

i e i iA s A P q−= . 

Then ( ) ( ),r

e lS P A Term A= .⁭ 

Finally ( ) ( )( )( ), , ,r

e e eS P A Term S P S P Aδ= .⁭ 

Lemma. For any detachable P, such that 

{ }P PEnd e= , ( ),eS P A  is a single normal recursive 

automaton.⁭ 

Lemma. For any detachable P, such that 

{ }P PEnd e= , ( ) ( )( ),eL A L S P A= .⁭ 

In the case where { }P P PExit R e= = , we may 

perform all the defined operations, but some of them will 

have no effect on the recursive automaton. 

Lemma. For any detachable P, such that { }P PR e= , 

( ) ( ),eL A S P Aδ= .⁭ 

Finally, to wrap the two cases together 

Definition. Let P be a detachable sub automaton of A. 

Then ( ),S P A  is defined as  

(1) ( ),eS P Aδ
 if P PExit R≡  

(2) ( ),eS P A  if P PExit O≡ .⁭ 

Theorem. For any detachable P  

( ) ( )( ),L A L S P A= .⁭ 

5. Merging sub automatons 
Being able to isolate a sub automaton, we are ready to 

change its “location”.  

Definition. Let P be a detachable sub automaton of A. 

Let ( )0, , , , , ,Q q r F A S P AδΣ = =  and 

: 'P Pγ →  is a bijection, where 'P  is an arbitrary set. 

Then ( ) 0' , ' \ ', , ', ', \A Q Q P P q r F Pδ= Σ = ∪ , 

where 

( ) ( )| \ ' | \Q P Q Pδ δΣ× ≡ Σ× , 

( )( ) ( )( )( ), , ' ,q P c q c q cγ δ δ γ∀ ∈ ≅

( ) ( ) ( )(\ \ 'q Q P r q Q P r q r q∀ ∈ ∈ ↔ =  

( ) ( ) ( )( ))'r q P r q r qγ∧ ∈ ↔ = , 

( ) ( )( ) ( )( \ 'q P r q Q P r q r qγ∀ ∈ ∈ ↔ = ,

( ) ( )( ) ( )( ))'r q P r q r qγ γ∧ ∈ ↔ = , 

( ) ( )( )( )'q P r q r qγ∀ ∈ ≃ . 

'A  is the relocation of P in A by γ .⁭ 

Lemma. Under the conditions of the definition above, 

'P  is a detachable sub automaton of 'A .⁭ 

Lemma. Let 'A  is the relocation of P in A by someγ . 

Then ( ) ( )'L A L A= .⁭ 

Now we are ready to define the actual “shrinking” of a 

recursive automaton.  

Definition.  For any two detachable sub automatons 

1P  and 2P  of A we say that 1P  is mergeable into 2P , 

1 2P P⊲ , if 1 2P P =∅∩  and there exist is an injection 

1 2: P Pγ →  such that 

( ) ( )( )1 2 1 1 2 1 2, ,q q P q q q qγ γ∀ ∈ ≠ ≠ , 

( )( ) ( )( )( )
1 21, , ,P Pq P c q c q cγ δ δ γ∀ ∈ ≅ , 

( ) ( )( )( )
1 21 P Pq P r q r qγ∀ ∈ ≃ , 

2 1P PExit Exitγ  =   .⁭ 

Definition. Let 1 2P P⊲  be any couple of detachable 

sub automatons of A. Then  

( )1 2 0, , , ', , ', ', 'Merge A P P Q q r Fδ= Σ , where 

( )( )1 2 0, , , , , , ,s s s s sA S P S P A Q q r Fδ= = Σ , 

1' \sQ Q P= , ' | 's Qδ δ= Σ× , 

( ){ }
1

' \ , ' | 's Pr r q q q Q= ∈

( )( ) ( ){ }
1

, ' | , ' , 's Pq q q q r q Qγ ∈ ∈∪ , 

' 'sF F Q= ∩ .⁭ 

Theorem. Let 1 2P P⊲  be any couple of detachable 

sub automatons of A. Then 



( ) ( )( )1 2, ,L A L Merge A P P= .⁭ 

What we did was to detach 1P  and 2P , redirect all 

recursive transitions pointing to 1P  from the outside world 

to start pointing to 2P  and finally erase 1P .  

Definition. 'A  is called a reduction of A, 'A A→ , if 

there exist 1 2P P⊲  - detachable sub automatons of A and 

( )1 2' , ,A Merge A P P= . We also denote this by 

1 2

'
P P

A A→
⊲

.⁭ 

Theorem. There are no infinite sequences of 

reductions 1 ... ...nA A→ → → .⁭ 

The last theorem tells us that we can not reduce a 

recursive automaton forever. Please note that reducing an 

automaton can actually increase the number of its states and 

transitions due to the splitting operation which adds a 

number of new places and transitions “surrounding” the sub 

automatons. This is why in the implementation which we 

use, the reductions are evaluated by the number of states 

and transitions that have been economized. Only reductions 

with a possible value are performed. 

6. Finding sub automatons to merge 
The majority of works investigating the “isomorphic sub 

graphs of graph” problem, for example [3], consider non 

directed graphs ,G V E=  with unweighted edges. They 

seek a break down of the set of vertices V  in the form 

1 2V P P Q= + + , where 

1 2P P =∅∩ , 1 2,P P Q =∅∩ ,   

and 1P  is isomorphic to 2P . Generally two types of 

algorithms are being applied – heuristic approaches which 

make a number of “attempts” each time starting from two 

arbitrary sub graphs, extending them with vertices greedily; 

complete solutions are also available – these methods 

include finding maximal cliques in the “second degree” of a 

graph.  

Our major goal is to have a compressed version of an 

automaton which still accepts words for linear time, so we 

can afford a higher complexity of the merging since we’ll 

be doing it only once. Unfortunately, the “second degree” 

approach can not be directly applied to our problem since 

we work with directed weighted graphs. We have 

developed a greedy approach for finding classes of 

mergeable sub automatons. 

Definition. A component over Q of order k, generated 

by the state q Q∈  is the set 

{ }1
' | ,..., '  - a path in A, where m  k+1k

q m
Q q q q q q= ∃ = = ≤

We will also say k-generated component over Q if we do 

not care of the generating state.⁭ 

Definition. We say that 
1

k

qQ  and 
2

k

qQ  are isomorphic, 

1 2
~k k

q qQ Q  if 
1 2

k k

q qQ Q =∅∩  and there is a bijection 

1 2
: k k

q qQ Qγ →  such that 

( ) ( ) ( ) ( )( ) ( )( )(
11 2 1 2 1 2, , ,k

qq q Q c q c q q c qδ δ γ γ∀ ∈ ∀ ∈Σ = ↔ =

 ( ) ( )( )( )1 1r q r qγ∧ ≅  

( ) ( )( )q Q q F q Fγ∧ ∀ ∈ ∈ ↔ ∈ .⁭ 

 

Two components are isomorphic if the graphs of their 

δ  transitions are isomorphic and the respective recursive 

transitions point to the same places. Note that this relation 

is not transitive because of the non-intersection 

requirement. 

Definition. The set 2k QE ⊆  is called an isomorphic 

class over Q of order k if every e E∈  is a k-generated 

component over Q and ( )( )1 2 1 2, ~e e E e e∀ ∈ .⁭ 

Definition.  An isomorphic class 
kE  is maximal if 

( )2 \Q kе е E∀ ∈  ' ke E∃ ∈  such that ( )~ 'e e¬ .⁭ 

Since there is a maxk  such that there are no 

components of order greater than maxk , our problem can be 

states as: “find all maximal isomorphic classes of any order 

in A”. If kQ  is the set of all components of order k, we can 

consider the graph  

( ){ }( )1 2 1 2 1 2, , | , , ~k kG Q Q Q Q Q Q Q Q= ∈  

Then our problem is to find all different maximal ~  

cliques in G. Unfortunately, this NP complete problem 

leads to unbearable amount of time for a practical 

application of the algorithm. This is why we take a greedy 

approach. 

Definition. Let 
k

qQ  be a component of order k. 

Then ( ) 1k k

q qs Q Q += .⁭ 

Definition. 
2: 2 2

QQo →  is a generating operation if 

it satisfies: 

(1) ( )ke o E∀ ∈  is an isomorphic class of order 1k +  

(2) ( ) ( ) ( )( )k k k k

q qQ E s Q o E∀ ∈ ∈∪  

(3) if  ( ) ( )
1 2 1 2 1 2
, ~ ~k k k k k k k

q q q q q qQ Q E Q Q s Q s Q∈ ∧ ∧  



then ( )( )( )1ke o E e∃ ∈ > .⁭ 

Definition. 
2 2: 2 2

Q Q

O →  is  

( ) ( ){ }|O E o e e E= ∈∪ , 

where 
2: 2 2

QQo →  is a generating operation.⁭ 

 

The idea behind our greedy algorithm is to perform a 

number a steps in the beginning of which we have a set of 

isomorphic classes of the same order and in the end of 

which we have another set of isomorphic classes of the next 

order. The generating operation is a set of weak rules 

describing the way we get the classes “extended”.   

In the implementation we used, we’ve taken the 

following approach: On the first step, generate all 

isomorphic classes of order 0 by finding the factor classes 

of the following Q Q×  relation: 

 ( ) ( ) ( )( )1 2 1 2~ ! , ! ,outq q c q c q cδ δ↔ ∀ ↔ .  

Then out of each factor class iF  we produce the 

isomorphic class { }{ }0 |i iE q q F= ∈ . Each isomorphic 

class or order zero is a set of singletons, containing states 

having the same symbols on their outgoing transitions.  

Then on each step k, the generating operation first 

makes ( ){ }| k

is e e E∈  for every isomorphic class and 

then greedily constructs a number of cliques of the ~  

relation out of it. These cliques are the isomorphic classes 

of order k+1. 

Finally, we have a set of isomorphic classes which 

cannot be further extended. It is clear that components in a 

class may intersect with components of other classes. If we 

merge the components in one of the intersecting classes we 

can no longer merge the corresponding components from 

the other class – the sub automatons are being changed. The 

rule we apply to select which class to merge first is simple – 

we order the classes by the number of states and transitions 

what would be economized if their components are merged. 

We apply this algorithm on minimal acyclic determined 

finite state automatons build from arbitrary languages to 

produce a recursive automaton with a smaller number of 

states and transitions. Then we apply it again on the result 

and keep applying it until no profit is gained. 

7. Experimental results 
The analysis of our experimental results showed that most 

of the FSAs build on practically applied dictionaries have a 

significant number of isomorphic sub automatons. 

However, the majority of these sub automatons have three 

or two states and merging them is not perspective – the 

number of the added new states and transitions is actually 

bigger than the number of erased states and transitions. 

Table 1 summarizes experimental results of applying the 

described idea over a number of English and Bulgarian 

dictionaries and on a bibliographic list. 

 

Table 1. 
 before merging after merging 

automaton states transitions states transitions 

small-
wordlist-1k 

1 853 3 004 1 763 
(95%) 

2 982 
(99%) 

wordlist-bg-
760k 

28 381 74 365 25 742 
(91%) 

73 255 
(99%) 

wordlist-bg-
70k 

31 171 66 006 27 874 
(89%) 

64 634 
(98%) 

yawl-260k 77 207 181 685 68 794 
(89%) 

178 007 
(98%) 

titles-first-
10k 

191 432 201 366 69 180 
(36%) 

107 750 
(54%) 

titles-
every12th-
10k 

239 252 249 774 86 489 
(36%) 

132 642 
(53%) 

titles-
every6th-
20k 

437 081 458 087 150 373 
(34%) 

235 338 
(51%) 

 

We can see seven dictionaries, the initial number of 

their states and transitions and the number of states and 

transitions of the resulting recursive dictionary. The 

percentage in brackets shows the ratio of the resulting 

number and the initial number. The dictionaries applied are: 

small-wordlist-1k – a small dictionary of 1,000 English 

words; wordlist-bg-760k - a dictionary of 760,000 

Bulgarian words; wordlist-bg-70k – 70,000 Bulgarian 

words; yawl-260k  - 260,000 English words; titles-first-10k 

– the first 10,000 lines of a bibliographic list with 120,000 

lines; titles-every12th-10k – every twelfth lines of the same 

list; titles-every6th-20k – every sixth line of the same list. 

8. References 
[1] Hopkroft, Ulman, Automata 

[2] J. Autbert, J. Berstel, L. Boasson. Context-Free languages 

and Pushdown Automata. 

[3] Sabine Bachl, Computing and drawing isomorphic 

subgraphs, Journal of graph algorithms and applications, 

http://jgaa.info, vol.8, no.2, pp. 215-238 (2004) 

 

 

 

 


