
Approximate word matching with synchronized rational
relations

Petar Mitankin
Institute for Parallel Processing, Bulgarian Academy of Sciences

petar@lml.bas.bg

Abstract
Algorithms that use approximate word matching
are widely used in different areas. We present
the work in progress on a method that has the
potential to select extremely fast from a large
dictionary of correct words a small set of words
that are proximate to a given input erroneous
word. The method can be applied for a large
class of distances based on weighted edit oper-
ations. By given distance, we build a two-tape
transducer whose language is a rational relation
with bounded length difference. In this paper
we present an algorithm for synchronizing a ra-
tional relation with bounded length difference.
We show how our method could be applied for
automatic correction of OCR-ed text.

Keywords

String correction, OCR-correction, approximate string match-

ing, Levenshtein distance, regular relations, finite state trans-

ducers, finite state automata.

1 Introduction

The problem of choosing suitable distance between fi-
nite words is crucial for many applications. One basic
approach to get a measure for proximity of words is to
determine a set of primitive edit operations. Then the
distance between the strings w and v is the minimal
number of primitive edit operations that transform w
into v. For example the edit operations substitution
(replacement of one letter with another), deletion of a
letter and insertion of a letter give the so-called Lev-
enshtein distance [8], known also as edit distance. To
refine the distance we can attach to every edit opera-
tion a weight (cost) [10, 18, 19, 7]. Then the distance
between w and v can be defined as the minimal cost
that is necessary to get v from w applying edit opera-
tions.

For example, for automatic correction of a text rec-
ognized by an OCR system, it is appropriate the prim-
itive edit operations to reflect the possible errors done
by the OCR system and the weights of the operations
to reflect the frequencies of the errors. For instance, if
the OCR system often recognizes in as m, but never
recognizes in as t, in order to get an appropriate mea-
sure for correction we have to assign a high weight to
the split m 7→ in and not to consider the split t 7→ in
as a primitive edit operation.

The other problem that often must be solved is how
to extract efficiently from a large dictionary of correct

words a small set of correction candidates that almost
always contains the right correction word. Usually this
is done in two steps. On the first step a big set of cor-
rect candidates is extracted from the dictionary. On
the second step the selected candidates are ranked in
order to find the most appropriate ones among them
[6, 11, 20, 16]. In our previuos work [15] we show a
new approach for directly selecting the best candidates
from the dictionary. Having an appropriate distance
d, the erroneous word w over a finite alphabet Σ and
the dictionary D, the desired small set can be gener-
ated as the intersection of D and the set of the words
v such that d(w, v) is not greater than n and n is an
edit bound that is fixed in advance.

One possible solution is to build by the erroneous
word w a deterministic finite automaton An(w) with
language L(An(w)) = {v | d(w, v) ≤ n} and if the
dictionary is represented also as a deterministic finite
automaton Adict to generate the intersection via a par-
allel traversal of both of An(w) and Adict in depth [14].
Here we suppose that at least one of the two automata
has a finite language, so the intersection can be gen-
erated with such a traversal. The disadvantage of this
method is that An(w) depends on w and for every er-
roneous word w we have to build An(w). Instead of
building An(w) for every w, we can use the so-called
universal Levenshtein automaton, that has a special
input alphabet of bitvectors, but does not depend on
a concrete word w [9].

In our previous work [15] we show that a variant
of the universal Levenshtein automata can be used
very successfully for a solution of the problem men-
tioned above. The input alphabet of these universal
automata consists of tuples of bitvectors. By given two
words w and v we first generate a sequence of tuples of
bitvectors i(w, v) which is the input word for a univer-
sal automaton A∀

n. The automaton A∀
n accepts i(w, v)

if and only if d(w, v) ≤ n. We use a parallel traversal
of A∀

n and Adict in depth to generate the intersection.
By the erroneous word w and the label (the letter)
of the current transition of Adict we compute the tu-
ple of bitvectors with which we have to continue the
traversal of A∀

n. These universal automata have an-
other advantage: they do not depend on the concrete
primitive edit operations but only on their type. Here
by type of a primitive edit operation we mean a cou-
ple of natural numbers 〈k,m〉, which indicates that
the edit operation replaces a string of k letters with
a string of m letters. For example the substitution
a 7→ b has the type 〈1, 1〉 (we replace one letter with
another), the deletion of a has the type 〈1, 0〉 (we re-

place one letter with zero letters), the insertion of a
has the type 〈0, 1〉 (we replace zero letters with one),
the split a 7→ bc has the type 〈1, 2〉 (we replace one let-
ter with two) etc. Thus for every type t = 〈k,m〉 we
have a set At ⊆ Σk ×Σm of all edit operations of type
〈k,m〉 that are allowed to be used for the transforma-
tion of w into v. The universal automaton depends
only on the edit bound n and the types t, but neither
on the concerete sets At, nor on a concrete word w.
The sets At are used for the computation of the tuples
of bitvectors.

The so-called forward-backward method [9] can be
applied to reduce vastly the time needed to find the
intersection. In this method we use Adict and Arev

dict - a
deterministic finite automaton with language consist-
ing of the reversed words from the dictionary D. We
split the erroneous word w into w1 and w2, w = w1w2,
such that w1 and w2 have approximately equal lengths.
For simplicity let us consider that d is the usual Leven-
shtein distance and the edit bound n = 1. We traverse
Adict with w1 and after it we traverse parallelly both
Adict and A∀

1 considering w2 as an erroneous word,
starting from the inital state of A∀

1 and the state of
Adict that we have reached with w1. In this way we
generate {w1v | d(w1w2, w1v) ≤ 1}. We traverse Arev

dict
with wrev

2 (the reversed w2) and after it we traverse
parallelly both Arev

dict and A∀
1 considering wrev

1 as an
erroneous word, starting from the inital state of A∀

1
and the state of Arev

dict we have reached with wrev
2 .

In this way we generate {vw2 | d(w1w2, vw2) ≤ 1}.
The forward-backward method is much faster than the
usual parallel traversal, because the branching dergees
in the initial parts of the automata Adict and Arev

dict are
very high especially when the automata represent nat-
ural languages.

The disadvantage of the universal Levenshtein au-
tomata is that we have to compute tuples of bitvectors.
In this paper we show how this can be avoided. We
use two-tape automata and synchronized rational rela-
tions instead of universal automata. The deterministic
automata, that we finally get, are also “universal” in
the sense that they do not depend on concrete word
w. Their great plus is that they do not require com-
putation of tuples of bitvectors. Their minus is that
their size is too great and they are not as much uni-
versal as the universal automata because they depend
strongly on the sets At and on the size of the alphabet
Σ. So they are applicable in the cases when the set
of primitive edit operations, the edit bound n and the
alphabet Σ are fixed.

2 Formal background

We assume that the reader is familiar with automata
theory [4, 13]. We use ε to denote the empty word. If
Σ is a finite alphabet, as usual we define Σ0 := {ε},
Σi+1 := {wa | w ∈ Σi & a ∈ Σ} for i ∈ N and Σ∗ :=∪

i∈N Σi. Σε := Σ∪{ε}. The length of a word w ∈ Σ∗

is denoted by |w|.

Definition 2.1 Let w ∈ Σ∗, t1, t2 ∈ N . Then

w(t1, t2] :=
{

wt1+1wt1+2 . . . wt2 if t1 < t2 ≤ |w|
ε otherwise

Definition 2.2 Let A = 〈Σ, Q, q0, ∆, F 〉 be a (non-
deterministic) finite state automaton with alphabet Σ,
set of states Q, initial state q0, transition relation ∆ ⊆
Q× (Σ∪ {ε})×Q and set of final states F . For q ∈ Q
the set L(q) := {v ∈ Σ∗ | ∃f ∈ F : 〈q, v, f〉 ∈ ∆∗}
is called the language of state q. Here ∆∗ denotes the
extended transition relation, which is defined as usual:
∆∗ is the smallest subset of Q×Σ∗ ×Q satisfying the
following conditions:

1. 〈q, ε, q〉 ∈ ∆∗ for all q ∈ Q

2. 〈q1, w, q2〉 ∈ ∆∗ & 〈q2, x, q3〉 ∈ ∆ ⇒ 〈q1, wx, q3〉 ∈
∆∗ for all w ∈ Σ∗ and all x ∈ Σ ∪ {ε}

The language of A is L(A) := L(q0). A set of words
M ⊆ Σ∗ is called regular (rational) iff there exists a
finite state automaton A such that L(A) = M .

Definition 2.3 Let T = 〈Σ, q0, I, ∆, F 〉 be a two-tape
finite state transducer with alphabet Σ for the two
tapes, set of states Q, initial state q0, transition rela-
tion ∆ ⊆ Q × (Σε × Σε) × Q and set of final states F .
For q ∈ Q the set L(q) := {〈w, v〉 ∈ Σ∗ × Σ∗ | ∃f ∈
F : 〈q, 〈w, v〉, f〉 ∈ ∆∗} is called the language of state
q. Here ∆∗ denotes the extended transition relation,
which is defined as usual: ∆∗ is the smallest subset of
Q× (Σ∗ ×Σ∗)×Q satisfying the following conditions:

1. 〈q, 〈ε, ε〉, q〉 ∈ ∆∗ for all q ∈ Q

2. 〈q1, 〈w, v〉, q2〉 ∈ ∆∗ & 〈q2, 〈x, y〉, q3〉 ∈ ∆ ⇒
〈q1, 〈wx, vy〉, q3〉 ∈ ∆∗ for all w, v ∈ Σ∗ and all
x, y ∈ Σ ∪ {ε}

The left language of q is
←
L (q) := {〈w, v〉 |

〈q0, 〈w, v〉, q〉 ∈ ∆∗}. The language of T is L(T) :=
L(q0). A binary relation R ⊆ Σ∗×Σ∗ is called regular
(rational) iff there exists a finite state transducer T
such that L(T) = R.

3 Generalized word distances

We define a family of functions that measure the prox-
imity between two words. Each function is based on a
set of weighted edit operations.

Definition 3.1 A weighted edit operation is a quadru-
ple op = 〈opx, opy, opr, opw〉 where opx, opy ∈ N ,
opx + opy > 0, opr ⊆ Σopx × Σopy

and opw ∈ N .
opw is called the weight of the operation op and opr is
called the replacement relation of op.

Definition 3.2 Let w, v ∈ Σ∗ and Op be a set of
weighted edit operations. We say that v can be ob-
tained from w with cost c by applying k operations
from Op iff w can be represented in the form w =
w(1)w(2) . . . w(k), v can be represented in the form v =
v(1)v(2) . . . v(k), such that each pair 〈w(i), v(i)〉 belongs
to some relation opr

i for some opi ∈ Op (1 ≤ i ≤ k)
and the cost c is given by opw

1 + . . . + opw
k .

Definition 3.3 Given a set of operations Op we de-
fine the function d[Op] : Σ∗ × Σ∗ → N ∪ {∞}.
d[Op](w, v) is the minimal cost to obtain v from w by
applying operations from Op. If v cannot be obtained

from w by applying operations from Op d[Op](w, v)
equals the special value ∞ (i < ∞, ∞+i := i+∞ := ∞
for all i ∈ N , ∞ + ∞ := ∞).

Using a variant of the dynamic programming scheme
described in [17] we can define the function d[Op] in
another way:

Definition 3.4 Let w, v ∈ Σ∗ be given. In order to
define d[Op](w, v) ∈ N ∪ {∞} we inductively define a
(|v|+1)× (|w|+1) matrix M with entries in N ∪{∞}:

1. M0,0 := 0

2. Let i 6= 0 or j 6= 0. Assume that Mi′,j′ is defined
for all i′ ≤ i and all j′ ≤ j such that i′+j′ < i+j.

(a) If, for some op ∈ Op, we have 〈w(j −
opx, j], v(i − opy, i]〉 ∈ opr, let Mi,j :=
minop∈OpM

op[i, j] where Mop[i, j] := opw +
Mi−opy,j−opx

(b) If there does not exist op ∈ Op such that
〈w(j−opx, j], v(i−opy, i]〉 ∈ opr, let Mi,j :=
∞.

Eventually we define d[Op](w, v) := M|v|,|w|.

Proposition 3.5 Defintions 3.3 and 3.4 are equiva-
lent.

Definition 3.6 Let Op be a set of weighted edit op-
erations. Op is called normal iff Op is finite and the
identity opid := 〈1, 1, {〈a, a〉 | a ∈ Σ}, 0〉 belongs to
Op.

In what follows, each set of weighted edit operations
is assumed to be normal. This requirement is natural
because it guarantees that d[Op](w,w) = 0 for each
word w ∈ Σ∗.

Example 3.7 Let Op := {opid, opdel, opins, opsubs}
where

opdel = 〈1, 0, {〈a, ε〉 | a ∈ Σ}, 1〉,
opins = 〈0, 1, {〈ε, a〉 | a ∈ Σ}, 1〉 and

opsubs = 〈1, 1, {〈a, b〉 | a, b ∈ Σ}, 1〉.

Then d[Op] is the usual Levenshtein distance [8].

Example 3.8 Let Op := {opid, opdel, opins, opsubs,
optr} where opdel, opins, opsubs are as above and
optr := 〈2, 2, {〈ab, ba〉 | a, b ∈ Σ}, 1〉. Then d[Op] is the
generalized Levenshtein distance with transposition.

Example 3.9 Let Op := {opid, opdel, opins, opsubs,
opmerge, opsplit} where opdel, opins, opsubs are as above
and

opmerge = 〈2, 1, {〈ab, c〉 | a, b, c ∈ Σ}, 1〉 and
opsplit = 〈1, 2, {〈c, ab〉 | a, b, c ∈ Σ}, 1〉.

Then d[Op] is the generalized Levenshtein distance
with merge and split.

Example 3.10 Let S ⊆ Σ × Σ and
Op = {opid, opdel, opins, opS−subs} where

opS−subs = 〈1, 1, S, 1〉.

Then d[Op] is the generalized Levenshtein distance
with S-restricted substitutions. If S = Σ × Σ, then
d[Op] is the usual Levenshtein distance defined in Ex-
ample 3.7.

Example 3.11 Let S ⊆ Σ × Σ, M ⊆
Σ2 × Σ and Sp ⊆ Σ × Σ2. Let Op :=
{opid, opdel, opins, opS−subs, opM−merge, opSp−split},
where

opM−merge = 〈2, 1, M, 1〉 and
opSp−split = 〈1, 2, Sp, 1〉.

Then d[Op] is the generalized Levenshtein distance
with S-restricted substitutions, M -restricted merges
and Sp-restricted splits.

Let us note that the distance d[Op] is not always a
measure. For example the generalized Levenshtein dis-
tance with S-restricted substitutions (Example 3.10)
is symmetric only when the relation S is symmet-
ric. The Levenshtein distance extended with trans-
positions (Example 3.8), dt

L, is symmetric, but not a
measure, because the triangle inequality does not hold
always: Let Σ = {a, b, c, d}. Then dt

L(abcd, abdc) = 1,
dt

L(abdc, bdac) = 2, but dt
L(abcd, bdac) = 4.

4 Two tape transducers for
bounded word distances and
synchronized rational rela-
tions

For a normal set of operations Op and an edit bound
n ∈ N we define a two-tape transducer Tn[Op] such
that L(Tn[Op]) = {〈w, v〉|d[Op](w, v) ≤ n}. In what
follows, let Op′ := {op ∈ Op | max(opx, opy) ≥ 2}.

Definition 4.1 Tn[Op] := 〈Σ, Q, 0, ∆, F 〉 where

1. the alphabet of the two tapes is Σ,

2. the set of states is Q := Q′ ∪ Q′′ where

• Q′ := {k ∈ N |k ≤ n} (main states),
• Q′′ := {kop,α,β,j | k + opw ∈ Q′ & op ∈

Op′ & 1 ≤ j < max(opx, opy) & 〈α, β〉 ∈ opr}
(intermediate states),

3. the initial state is 0,

4. the transition relation ∆ is the following subset of
Q × (Σε × Σε) × Q: Let π1, π2 ∈ Q and 〈a, b〉 ∈
Σε × Σε. Then 〈π1, 〈a, b〉, π2〉 ∈ ∆ iff one of the
following conditions is satisfied:

(a) π1 has the form k and π2 has the form k+opw

where 〈a, b〉 ∈ opr for some operation op ∈
Op such that op 6∈ Q′,

Fig. 1: Two-tape transducer T1[{opid, opdel, opins, opsubs}]
for the usual Levenshtein distance, Σ = {a, b}

(b) π1 has the form k, π2 has the form kop,α,β,1,
a = α1 if opx > 0, a = ε if opx = 0, b = β1 if
opy > 0, b = ε if opy = 0, for some operation
op ∈ Op′

(c) π1 has the form kop,α,β,j , π2 has the form
kop,α,β,j+1, a = αj+1 if opx ≥ j + 1, a = ε if
opx < j + 1, b = βj+1 if opy ≥ j + 1, b = ε
if opy < j + 1, for some operation op ∈ Op′

and some j < max(opx, opy) − 1
(d) π1 has the form kop,α,β,m for m =

max(opx, opy)− 1, π2 has the form k + opw,
a = αm+1 if opx ≥ m + 1, a = ε if opx <
m + 1, b = βm+1 if opy ≥ m + 1, b = ε if
opy < m + 1, for some operation op ∈ Op′

5. the set of final states is F := Q′.

Example 4.2 The transducer
T1[{opid, opdel, opins, opsubs}] for the usual Leven-
shtein distance (Example 3.7), alphabet Σ = {a, b}
and edit bound n = 1 is shown in Figure 1.

Example 4.3 Let Σ = {a, b}, S = {〈a, b〉}, M =
{〈aa, b〉, 〈bb, a〉}, Sp = {〈a, bb〉} and Op = {opid, opdel,
opins, opS−subs, opM−merge, opSp−split}. d[Op] is the
generalized Levenshtein distance with S-restricted
substitutions, M -restricted merges and Sp-restricted
splits (Example 3.11). T2[Op] is shown in Figure 2.

Proposition 4.4
L(Tn[Op]) = {〈w, v〉 | d[Op](w, v) ≤ n}

Proof. Let k ∈ Q′. Then it can be shown that
L(k) = {〈w, v〉 | d[Op](x, y) ≤ n − k}. Hence
L(Tn[Op]) = L(0) = {〈w, v〉 | d[Op](w, v) ≤ n}.

The disadvantage of the two-tape transducer Tn[Op]
is that generally there are many ways to decompose

Fig. 2: Two-tape transducer for generalized Leven-
shtein distance with restricted substitutions, merges
and splits. The edit bound is n = 2.

a couple of words 〈w, v〉 ∈ Σ∗ × Σ∗ into elements
of Σε × Σε. Hence there may be many paths in
the transducer that we have to check to verify that
〈w, v〉 ∈ L(Tn[Op]) or 〈w, v〉 6∈ L(Tn[Op]). For exam-
ple if we use T1[{opid, opdel, opins, opsubs}] (Figure 1)
to verify that the usual Levenshtein distance between
w = abbab and v = bbba is greater than one, we tra-
verse T1[{opid, opdel, opins, opsubs}] with the three se-
quences

1. 〈a, b〉, 〈b, b〉, 〈b, b〉, 〈a, a〉, ...

2. 〈a, ε〉, 〈b, b〉, 〈b, b〉, ...

3. 〈ε, b〉, ...

to see that 〈w, v〉 6∈ L(T1[{opid, opdel, opins, opsubs}]).
Note that even if we determinize
T1[{opid, opdel, opins, opsubs}] as a usual nonde-
terministic automaton over Σε × Σε, we shall have to
traverse again with the above three sequences.

To overcome this problem we use the so-called syn-
chronized rational relations. The idea is to con-
vert Tn[Op] into a finite state automaton A that has
not transitions of the type 〈x, ε〉 and 〈ε, x〉. This
means that the two input words for A must have
equal lenghts. We pad on the right side the shorter
of the two input words with a new symbol $ 6∈ Σ
to match in length the longer input word. So we
would like to build a finite state automaton A =
〈Σ$ ×Σ$, QA, qA

0 , ∆A, FA〉, (Σ$:= Σ∪ {$}), such that
L(A) = {pad(w, v) | 〈w, v〉 ∈ L(Tn[Op])}, where the
function pad : Σ∗ × Σ∗ → (Σ$ × Σ$)∗ is defined as
follows:

Definition 4.5 pad(w, v) :=

ε if w = v = ε
〈w1, v1〉〈w2, v2〉 . . . 〈w|w|, v|w|〉 if |w| = |v|
〈w1, v1〉〈w2, v2〉 . . . 〈w|w|, v|w|〉
〈$, v|w|+1〉〈$, v|w|+2〉 . . . 〈$, v|v|〉 if |w| < |v|
〈w1, v1〉〈w2, v2〉 . . . 〈w|v|, v|v|〉
〈w|v|+1, $〉〈w|v|+2, $〉 . . . 〈w|w|, $〉 if |w| > |v|

Definition 4.6 Let R ⊆ Σ∗ × Σ∗. R is called syn-
chronized rational relation if there exists a finite state
automaton A over the alphabet Σ$ × Σ$, such that
L(A) = {pad(w, v) | 〈w, v〉 ∈ R}.

Synchronized rational relations are well investi-
gated: [2, 1, 3]. A comprehensive study of the family
of the synchronized rational relations is [3].

It is easy to see that there exists a normal set of op-
erations Op and an edit bound n, such that L(Tn[Op])
is not a synchronized rational relation. For example let
Σ = {a}, Op = {opid, 〈1, 2, {〈a, aa〉}, 0〉} and n = 0.
Let us suppose that L(Tn[Op]) is a synchronized ra-
tional relation. Then {〈a, a〉k〈$, a〉m | m ≤ k} is a
regular language. Let x = 〈a, a〉 and y = 〈$, a〉. So
{xkym | m ≤ k} is a regular language over the alpha-
bet Σ = {x, y}. Using the pumping lemma for the
regular languages we can check that {xkym | m ≤ k}
is not a regular language.

We define a class of set of operations for which
L(Tn[Op]) is a synchronized rational relation.

Definition 4.7 Let Op be a set of operations. The
zero weighted edit operations of Op lie on the main
diagonal iff ∀op ∈ Op : (opw = 0 & opr 6= φ) ⇒ opx =
opy.

Proposition 4.8 Let Op be a normal set of opera-
tions and the zero weighted edit operations of Op lie
on the main diagonal. Then L(Tn[Op]) is a synchro-
nized rational relation.

To prove Proposition 4.8 we use the following

Theorem 4.9 (Frougny and Sakarovitch [3]) A
rational relation with bounded length difference is a
synchronized rational relation.

Definition 4.10 Let T = 〈Σ, Q, q0, ∆, F 〉 is a two-
tape transducer and q ∈ Q. The imbalance set of q is
Imb(q) := {||w| − |v|| | 〈w, v〉 ∈

←
L (q)}. A rational re-

lation R has a bounded length difference if there exists
a transducer T such that L(T) = R and every state of
T has a finite imbalance set.

Proposition 4.11 Let Op be a normal set of opera-
tions. Then the zero weighted edit operations of Op lie
on the main diagonal iff every state of Tn[Op] has a
finite imbalance set.

Definition 4.12 Let P = 〈〈π1, 〈a1, b1〉, π2〉,
〈π2, 〈a2, b2〉, π3〉, . . . , 〈πk, 〈ak, bk〉, πk+1〉〉 ∈ ∆k be a
path of k > 0 transitions in the two-tape transducer
T , whose transition relation is ∆. The imbalance of P
is imb(P) := ||a1a2 . . . ak| − |b1b2 . . . bk||.

Proof of Proposition 4.11
Let Op be a normal set of operations and the

zero weighted edit operations of Op lie on the main
diagonal. Then every simple cycle of transitions P =
〈〈π1, 〈a1, b1〉, π2〉, 〈π2, 〈a2, b2〉, π3〉, . . . , 〈πk, 〈ak, bk〉, π1〉〉 ∈
∆k (∆ is the transition relation of Tn[Op] and πi 6= πj

if i 6= j and max(i, j) < k) has an imbalance which
is equal to zero, imb(P) = 0. Hence every state of
Tn[Op] has a finite imbalance set. Now let every
state of Tn[Op] have a finite imbalance set and let us
suppose that op ∈ Op such that opr 6= φ, opw = 0 and
opx 6= opy. Then {k|opx − opy| | k ∈ N} ⊆ Imb(0).
Hence Imb(0) is infinite. Contradiction.

Proof of Proposition 4.8
Proposition 4.8 follows from Proposition 4.11,

Definiton 4.10 and Theorem 4.9.

5 Synchronizing algorithm

In [3] Frougny and Sakarovitch present an algorithm
for synchronization of a rational relation with bounded
length difference. Their algorithm converts the in-
put transducer into a letter-to-letter 2-automaton with
terminal function (see [3]). Here we present an al-
gorithm that builds from the input transducer T =
〈Σ, Q, q0,∆, F 〉 a nondeterministic finite state automa-
ton A = 〈Σ$ ×Σ$, QA, qA

0 , ∆A, FA〉, such that L(A) =
{pad(w, v) | 〈w, v〉 ∈ L(A)}. Our algorithm termi-
nates if every state of T has a finite imbalance set.

Without loss of generality we consider that ∆ ⊆
Q × ((Σ × Σ) ∪ ({ε} × Σ) ∪ (Σ × {ε})) × Q (T has no
〈ε, ε〉 transitions), L(q) 6= φ and

←
L (q) 6= φ for every

q ∈ Q.
Traversing a two-tape transducer may be considered

as a process of asynchronous moving of two reading
heads from state to state (one head for the first tape
and one for the second tape). The beginning of the
process is the following:

1. We start with the two heads on the initial state
q0

2. If there is a transition 〈q0, 〈a, b〉, q〉 ∈ ∆ for some
a, b ∈ Σ, then we continue the traversal with mov-
ing the two heads on the state q

3. If there is a transition 〈q0, 〈a, ε〉, q〉 ∈ ∆ for some
a ∈ Σ, then we continue the traversal with moving
only the first head on the state q. The second head
stays on state q0 and waits for the symbol of the
next transition that starts from q.

(a) If it is 〈q, 〈c, ε〉, p〉 for some c ∈ Σ, we move
the first head on the state p and the second
head stays and waits again.

(b) If it is 〈q, 〈c1, c2〉, p〉, then the first head goes
in p and the second head goes in q.
. . .

4. If there is a transition 〈q0, 〈ε, a〉, q〉 for some a ∈ Σ,
then we proceed symmetrically to case 3.

The process continues with the movements of the two
heads or their stays according to the transitions of
the transducer. Since L(T) is a rational relation with
bounded length difference, there is a constant c ∈ N
such that the slower head, that has more stays and
lags, can never be more than c transitions behind
the faster one. In our construction every state of the
synchronized automaton A encodes the path that the
slower head must traverse to reach the other head.

Let us suppose that every state of T has a finite
imbalance set. We decompose the transition relation
∆ into two relations ∆1 ⊆ Q × (Σ ∪ {ε}) × Q and
∆2 ⊆ Q×(Σ∪{ε})×Q. ∆1 and ∆2 give the transitions
on the the first and the second tape of the transducer
T resp.: 〈q′, x, q′′〉 ∈ ∆1 iff there exists y ∈ Σ∪{ε} such
that 〈q′, 〈x, y〉, q′′〉 ∈ ∆, 〈q′, y, q′′〉 ∈ ∆2 iff there exists
x ∈ Σ ∪ {ε} such that 〈q′, 〈x, y〉, q′′〉 ∈ ∆. We extend
∆1 and ∆2 to ∆∗

1 ⊆ Q×Σ∗×Q and ∆∗
2 ⊆ Q×Σ∗×Q

as usual: ∆∗
1 (∆∗

2) is the smallest subset of Q×Σ∗×Q
such that

1. 〈q, ε, q〉 ∈ ∆∗
1 (〈q, ε, q〉 ∈ ∆∗

2) for each q ∈ Q,

2. 〈q1, x, q2〉 ∈ ∆∗
1 & 〈q2, c, q3〉 ∈ ∆1 ⇒ 〈q1, xc, q3〉 ∈

∆∗
1

(〈q1, x, q2〉 ∈ ∆∗
2 & 〈q2, c, q3〉 ∈ ∆2 ⇒ 〈q1, xc, q3〉 ∈

∆∗
2)

for each q1, q2, q3 ∈ Q, each x ∈ ∆∗
1 (x ∈ ∆∗

2) and
each c ∈ Σ ∪ {ε}.

To define the states of A we use the relations ξi ⊆
Q×Σ×Q for i = 1, 2, which are some kind of ε-closed
transition relations, defined as follows: 〈q1, x, q2〉 ∈ ξi

iff there exists q ∈ Q such that 〈q1, x, q〉 ∈ ∆i and
〈q, ε, q2〉 ∈ ∆∗

i . Pi for i = 1, 2 are the following sets of
sequences of ξi-transitions:

Pi := {q1
x1→ q2

x2→ q3 . . . qk
xk→ qk+1 ∈ ξk

i | 0 <
k ≤ maxImb}, where maxImb = maxπ∈Q & i∈Imb(π)i.
Here and in what follows we use

q1
x1→ q2

x2→ q3 . . . qk
xk→ qk+1

to denote the path
〈〈q1, x1, q2〉, 〈q2, x2, q3〉, . . . , 〈qk, xk, qk+1〉〉.
Pi is a finite set for i = 1, 2, since every state of T

has a finite imbalance set and maxImb is well-defined.
We define the nondeterministic automaton A =

〈Σ$ × Σ$, QA, qA
0 , ∆A, FA〉:

1. The set of states is QA := Q0 ∪ Q1 ∪ Q2 ∪ Q′
1 ∪

Q′
2 ∪ {⊥}, where

(a) Q0 := {〈q, q〉 | q ∈ Q} (states encoding that
the two heads are on the same state)

(b) Q1 := {〈ε, P 〉 | P ∈ P1} (states encoding
the path that the first head must traverse to
reach the second one)

(c) Q2 := {〈P, ε〉 | P ∈ P2} (states encoding the
path that the second head must traverse to
reach the first one)

(d) Q′
1 := {〈$, P 〉 | P ∈ P1} (states encoding

that the first input word has been consumed
and $-s are to be consumed)

(e) Q′
2 := {〈P, $〉 | P ∈ P2} (states encoding

that the second input word has been con-
sumed and $-s are to be consumed)

(f) ⊥ is a sink state, 〈⊥, c, p〉 6∈ ∆A for all c ∈
(Σ$ × Σ$) ∪ {ε} and all p ∈ QA

2. The initial state is qA
0 := 〈q0, q0〉

3. The set of final states is FA := {〈q, q〉 | q ∈ F} ∪
{⊥}

4. The transition relation ∆A is the subset of QA ×
((Σ$ × Σ$) ∪ {ε}) × QA defined as follows: Let
π1, π2 ∈ QA and c ∈ (Σ$ × Σ$) ∪ {ε}. Then
〈π1, c, π2〉 ∈ ∆A iff one of the following conditions
is satisfied:

(a) π1 has the type 〈q′, q′〉 for some q′ ∈ Q, c ∈
Σ2, π2 has the type 〈q′′, q′′〉 for some q′′ ∈ Q
and 〈q′, c, q′′〉 ∈ ∆

(b) π1 has the type 〈q′, q′〉 for some q′ ∈ Q, c = ε,
π2 has the type 〈ε, q′ y→ q′′〉 for some q′′ ∈ Q
and some y ∈ Σ such that 〈q′, 〈ε, y〉, q′′〉 ∈ ∆

(c) π1 has the type 〈q′, q′〉 for some q′ ∈ Q, c = ε,
π2 has the type 〈q′ x→ q′′, ε〉 for some q′′ ∈ Q
and some x ∈ Σ such that 〈q′, 〈x, ε〉, q′′〉 ∈ ∆

(d) π1 has the type 〈ε, q1
y1→ q2

y2→ q3
y3→

q4 . . . qk
yk→ qk+1〉, c = 〈a, y1〉 for some a ∈ Σ,

π2 has the type 〈ε, q2
y2→ q3

y3→ q4 . . . qk
yk→

qk+1
b→ qk+2〉 for some b ∈ Σ and some

qk+2 ∈ Q such that 〈qk+1, 〈a, b〉, qk+2〉 ∈ ∆

(e) π1 has the type 〈ε, q1
y1→ q2

y2→ q3 . . . qk
yk→

qk+1〉, c = ε, π2 has the type 〈ε, q1
y1→

q2
y2→ q3 . . . qk

yk→ qk+1
b→ qk+2〉 for some

b ∈ Σ and some qk+2 ∈ Q such that
〈qk+1, 〈ε, b〉, qk+2〉 ∈ ∆

(f) π1 has the type 〈ε, q1
y1→ q2〉, c = 〈a, y1〉 for

some a ∈ Σ, π2 has the type 〈q, q〉 for some
q ∈ Q such that 〈q2, 〈a, ε〉, q〉 ∈ ∆

(g) π1 has the type 〈ε, q1
y1→ q2

y2→ q3
y3→

q4 . . . qk
yk→ qk+1〉 for some k ≥ 2, c = 〈a, y1〉

for some a ∈ Σ, π2 has the type 〈ε, q2
y2→

q3
y3→ q4 . . . qk

yk→ q〉 for some q ∈ Q such that
〈qk+1, 〈a, ε〉, q〉 ∈ ∆

(h) π1 has the type 〈q1
x1→ q2

x2→ q3
x3→ q4 . . . qk

xk→
qk+1, ε〉, c = 〈x1, b〉 for some b ∈ Σ, π2 has
the type 〈q2

x2→ q3
x3→ q4 . . . qk

xk→ qk+1
a→

qk+2, ε〉 for some a ∈ Σ and some qk+2 ∈ Q
such that 〈qk+1, 〈a, b〉, qk+2〉 ∈ ∆

(i) π1 has the type 〈q1
x1→ q2

x2→ q3 . . . qk
xk→

qk+1, ε〉, c = ε, π2 has the type 〈q1
x1→

q2
x2→ q3 . . . qk

xk→ qk+1
a→ qk+2, ε〉 for some

a ∈ Σ and some qk+2 ∈ Q such that
〈qk+1, 〈a, ε〉, qk+2〉 ∈ ∆

(j) π1 has the type 〈q1
x1→ q2, ε〉, c = 〈x1, b〉 for

some b ∈ Σ, π2 has the type 〈q, q〉 for some
q ∈ Q such that 〈q2, 〈ε, b〉, q〉 ∈ ∆

(k) π1 has the type 〈q1
x1→ q2

x2→ q3
x3→ q4 . . . qk

xk→
qk+1, ε〉 for some k ≥ 2, c = 〈x1, b〉 for

some b ∈ Σ, π2 has the type 〈q2
x2→ q3

x3→
q4 . . . qk

xk→ q, ε〉 for some q ∈ Q such that
〈qk+1, 〈ε, b〉, q〉 ∈ ∆

(l) π1 has the type 〈ε, q1
y1→ q2〉 for some q2 ∈ F ,

c = 〈$, y1〉, π2 is the sink state ⊥

(m) π1 has the type 〈ε, q1
y1→ q2

y2→ q3
y3→

q4 . . . qk
yk→ qk+1〉 for some k ≥ 2 and some

qk+1 ∈ F , c = 〈$, y1〉, π2 has the type
〈$, q2

y2→ q3
y3→ q4 . . . qk

yk→ qk+1〉

(n) π1 has the type 〈q1
x1→ q2, ε〉 for some q2 ∈ F ,

c = 〈x1, $〉, π2 is the sink state ⊥

(o) π1 has the type 〈q1
x1→ q2

x2→ q3
x3→ q4 . . . qk

xk→
qk+1, ε〉 for some k ≥ 2 and some qk+1 ∈ F ,
c = 〈x1, $〉, π2 has the type
〈q2

x2→ q3
x3→ q4 . . . qk

xk→ qk+1, $〉

(p) π1 has the type 〈$, q1
y1→ q2〉, c = 〈$, y1〉, π2

is the sink state ⊥
(q) π1 has the type 〈q1

x1→ q2, $〉, c = 〈x1, $〉, π2

is the sink state ⊥
(r) π1 has the type 〈$, q1

y1→ q2
y2→ q3

y3→
q4 . . . qk

yk→ qk+1〉 for some k ≥ 2, c = 〈$, y1〉,
π2 has the type 〈$, q2

y2→ q3
y3→ q4 . . . qk

yk→
qk+1〉

(s) π1 has the type 〈q1
x1→ q2

x2→ q3
x3→ q4 . . . qk

xk→
qk+1, $〉 for some k ≥ 2, c = 〈x1, $〉, π2 has
the type 〈q2

x2→ q3
x3→ q4 . . . qk

xk→ qk+1, $〉

The proof of the following proposition is omitted.

Proposition 5.1
L(A) = {pad(〈w, v〉) | 〈w, v〉 ∈ L(T)}

The procedure, that builds the nondeterministic au-
tomaton A = 〈Σ$ × Σ$, QA, qA

0 , ∆A, FA〉 by a given
input transducer T , starts from the initial state qA

0 =
〈q0, q0〉 and using the definiton of the transition re-
lation ∆A finds in breadth all states of A that are
reachable from the initial one. The procedure termi-
nates if every state of T has a finite imbalance set.
After ε-removal, determinization and minimization we
get from A the final synchronized automaton that can
be used in practice.

So we build a synchronized automaton S from
Tn[Op]. S recognizes an input word pad(w, v) if and
only if d[Op](w, v) ≤ n. Let us suppose that we fin-
ish the traversal of S with pad(w, v) in a final state.
It may be useful to know by the final state the dis-
tance d[Op](w, v). For this aim a little modifica-
tion of the construction of A is needed. In cases
(l), (n), (p) and (q) π2 has to be 〈q2, q2〉 instead of
⊥. Then the distance that corresponds to a final
state 〈k, k〉 is k. This information can be kept during
the determinization and the minimization. After the
above modification L(A) ⊃ {pad(w, v) | d[Op](w, v) ≤
n}, but d[Op](w, v) ≤ n ⇒ pad(w, v) ∈ L(A) and
d[Op](w, v) > n ⇒ pad(w, v) 6∈ L(A).

Table 1 shows the dependence of the synchronized
automaton for the usual Levenshtein distance on the
size of the alphabet and the edit bound.

alphabet size edit bound states transitions

2 1 14 58
2 2 187 1, 082
2 3 2, 438 16, 384
2 4 28, 557 205, 500
10 1 222 5, 250
50 1 5, 102 63, 0250

Table 1: Synchronized automata for the usual Leven-
shtein distance

subs merge split cand recall univ synchr

(a) 0 1 1 7.78 70.565% 0.032 ms 0.012 ms
(b) 0 0 0 45.73 94.52% 0.107 ms 0.076 ms
(c) 0.0006 0.0325 0.0005 5.48 94.519% 0.049 ms 0.013 ms

Table 2: Test for distance bound n = 1.

The synchronized automaton for the usual Leven-
shtein distance, Σ = {a, b} and edit bound 1 is shown
in Figure 3. If we finish a traversal of the automa-
ton with pad(w, v) in state 0, then the Levenshtein
distance between w and v is 0. If we finish in state
1, 2, 3, 4, 6, 7 or 9, then the distance is 1.

6 Evaluation results

As a test set for the new method we use the TREC-5
corpus with character error rate 5% [5] and an English
dictionary with 264,061 words. Via dynamic program-
ming we extract from the corpus couples of the type
〈pattern, original〉, where pattern is an OCRed word
and original is its corresponding original. The prob-
lem of case errors was ignored for these tests.

As a measure for the proximity between pattern and
original we use the generalized Levenshtein distance
with S-restricted substitutions, M -restricted merges
and Sp-restricted splits (Example 3.11). We use 1/2
of these couples as a training set to calculate the rela-
tive frequency of each symbol dependent substitution,
merge and split. We use thresholds subs, merge, and
split to define resp. the sets S, M and Sp. S contains
only the substitutions with relative frequencies greater
than subs. Analogously we determine the sets M and
Sp. Estimating the relative frequencies can be done
also without using ground truth training data [12].
Using the remaining 1/2 we prepared a test set that
consist of 100, 000 couples 〈pattern, original〉 such that
original is in the dictionary. For each pattern from
the test set we select a set of correction candidates
from the dictionary, applying the forward-backward
method. Table 2 represents the results for edit bound
n = 1. The number cand gives the average number of
correction candidates per pattern found in the dictio-
nary. The length of every test pattern does not exceed
6. For longer patterns greater edit bounds are needed.
univ is the average time per pattern needed to find
the correction candidates using universal automaton.
synchr is the average time per pattern needed to find
the correction candidates using synchronized automa-
ton. recall is the percentage of patterns where the
correct original is found in the selected set of correc-
tion candidates. The CPU of the machine used for the
experiments is Pentium 4, 2.4 GHz with 1GB RAM.

For the usual Levenshtein distance (a) the algo-

0

(a, a)
(b, b)

1

($, a)

($, b)

(a, $)

(b, $)

2

(a, b)

3

(b, a)

(b, b)
(a, a)

($, a)

(b, $)

4

(a, a)

6

(b, b)

5

(b, a)

($, b)

(a, $)

7

(a, a)

9
(b, b)

8

(a, b)

($, a)

(b, b)

(a, a)

10

(b, a) (a, a)

(b, $)

(b, b)

11

(b, a)

(a, $)

(b, b)

(a, a)

12

(a, b)

($, b)

(a, a)

(b, b)

13

(a, b)

($, b)

(a, $)(a, b)

(b, b)

(a, a)

($, a)

(b, $)
(b, a)

(b, b)

(a, a)

($, b)

(b, b)

(a, b)
(a, $)

(a, a)

(a, b)

(b, $)

(b, a)

(b, b)

($, a)
(b, a)

(a, a)

Fig. 3: Synchronized automaton for the usual Leven-
shtein distance, Σ = {a, b}, the edit bound is 1

rithm that uses synchronized automata is approxi-
mately three time faster than the algorithm that uses
universal automata. For the refined Levenshtein dis-
tance (c) - approximately four times. This is due to the
fact that the universal automaton for the usual Lev-
enshtein distance uses only one characteristic vector
and the universal automaton for the refined distance
(c) uses four characteristic vectors. Synchronized au-
tomata do not require computation of characteristic
vectors. Although in case (b) the universal automaton
also uses one characteristic vector, synchronized au-
tomata are not as faster than in cases (a) and (c). The
reason for this is probably the high number of candi-
dates extracted from the dictionary. The high number
of candidates means that there is too much traversal of
the dictionary. Probably the traversal (that is chang-
ing the current states, some call stack operations etc.)
requires more time than computing the characteristic
vectors.

Unfortunately, when we increase the edit bound, the
size of the synchronized automaton grows drasticly
fast. Even when the edit bound is 2 and the alphabet
size is 26, for the refined Levenshtein distance (c) with
proper thersholds we did not succeed to determinize
A.

Other negative feature of the synchronized au-
tomata in comparison to the universal automata is
that for the forward-backward method we have to use
two synchronized automata: A1, such that L(A1) =
{pad(w, v) | d[Op](w, v) ≤ n}, and A2, such that
L(A2) = {pad(w, v) | d[Oprev](w, v) ≤ n}. Here Oprev

is the set of the reversed operations of Op: Oprev =
{〈opx, opy, {〈αrev, βrev〉 | 〈α, β〉 ∈ opr}, opw〉 | op ∈
Op}.

7 Conclusion and future work

Synchronized automata are extremely effective instru-
ment that could be used for approximate matching
problems. In our experiments we used only uniform
wegths (0 and 1) of the edit operations. But with
synchronized automata we could manage with more
than two degrees of discretization. Future work will
be devoted to the problem of the great size of the syn-
chronized automata. Algorithm for direct incremental
building of the minimal synchronized automata could
be useful.

References
[1] S. Eilenberg. Automata, Languages and Machines, Vol. A.

Academic Press, New York, 1974.

[2] C. Elgot and J. Mezei. On relations defined by generalized
finite automata. IBM J. Res Develop., 9:47–68, 1965.

[3] C. Frougny and J. Sakarovitch. Synchronized rational relations
of finite and infinite words. Theoretical Computer Science,
108:45–82, 1993.

[4] J. Hopcroft and J. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Reading, MA,
1979.

[5] P. B. Kantor and E. M. Voorhees. The TREC-5 confusion
track: Comparing retrieval methods for scanned text. Infor-
mation Retrieval, 2(2/3):165–176, 2000.

[6] K. Kukich. Techniques for automatically correcting words in
texts. ACM Computing Surveys, pages 377–439, 1992.

[7] T. A. Lasko and S. E. Hauser. Approximate string matching
algorithms for limited-vocabulary ocr output correction. In
Proceedings of SPIE, Vol. 4307, Document Recognition and
Retrieval DRR(VIII), January 24-25, 2001., pages 241–249,
2001.

[8] V. I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Sov. Phys. Dokl., 10:707–710, 1966.

[9] S. Mihov and K. U. Schulz. Fast approximate search in large
dictionaries. Computational Linguistics, 30(4):451–477, De-
cember 2004.

[10] B. J. Oommen and R. K. Loke. Pattern recognition of strings
with substitutions, insertions, deletions and generalized trans-
position. Pattern Recognition, 30(7):789–800, 1997.

[11] O. Owolabi and D. McGregor. Fast approximate string match-
ing. Software - Practice and Experience, 18(4):387–393, 1988.

[12] C. Ringlstetter, U. Reffle, A. Gotscharek, and K. U. Schulz.
Deriving symbol dependent edit weights for text correction -
the use of error dictionaries. In Proceedings of the ninth Inter-
national Conference on Document Analysis and Recognition
(ICDAR), page to appear, 2007.

[13] E. Roche and Y. Schabes. Deterministic part-of-speech tag-
ging with finite state transducers. Computational Linguistics,
21(2):227–253, 1995.

[14] K. U. Schulz and S. Mihov. Fast String Correction with
Levenshtein-Automata. International Journal of Document
Analysis and Recognition, 5(1):67–85, 2002.

[15] K. U. Schulz, S. Mihov, and P. Mitankin. Fast selection of small
and precise candidate sets from dictionaries for text correction
tasks. In Proceedings of the ninth International Conference
on Document Analysis and Recognition (ICDAR), page to
appear, 2007.

[16] C. Strohmaier, C. Ringlstetter, K. U. Schulz, and S. Mihov. A
visual and interactive tool for optimizing lexical postcorrection
of OCR results. In Proceedings of the IEEE Workshop on
Document Image Analysis and Recognition, DIAR’03, 2003.

[17] R. A. Wagner and M. J. Fischer. The string-to-string correction
problem. Journal of the ACM, 21(1):168–173, 1974.

[18] A. Weigel, S. Baumann, and J. Rohrschneider. Lexical post-
processing by heuristic search and automatic determination of
the edit costs. In Proc. of the Third International Conference
on Document Analysis and Recognition (ICDAR 95), pages
857–860, 1995.

[19] A. Weigel, T. Jager, and A. Pies. Estimation of probabilities
for edit operations. In Proceedings of the 15th International
Conference on Pattern Recognition, volume 2, pages 777–780,
2000.

[20] J. Zobel and P. Dart. Finding approximate matches in large
lexicons. Software–Practice and Experience, 25(3):331–345,
1995.

