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Preface

Biomedical NLP deals with the processing of healthcare-related text—clinical documents created by
physicians and other healthcare providers at the point of care, scientific publications in the areas of
biology and medicine, and consumer healthcare text such as social media blogs. Recent years have seen
dramatic changes in the types and amount of data available to researchers in this field. Where most
research on publications in the past has dealt with the abstracts of journal articles, we now have access
to the full texts of journal articles via PubMedCentral. Where research on clinical documents has been
hampered by a lack of availability of data, we now have access to large bodies of data through the auspices
of the Cincinnati Children’s Hospital NLP Challenge, the i2b2 shared tasks (www.i2b2.org), the TREC
Electronic Medical Records track, Clinical TempEval series of tasks, the US-funded Strategic Health
Advanced Research Projects Area 4 (www.sharpn.org) and the Shared Annotated Resources (ShARe;
https://sites.google.com/site/shareclefehealth/taskdescription; www.clinicalnlpannotations.org) project.
Meanwhile, the number of abstracts in PubMed continues to grow exponentially. Text in the form of
blogs created by patients discussing various healthcare topics has emerged as another data source, with
a new perspective on healthrelated issues. Connecting the information from the three main sources in
multiple languages to the scientific community, the healthcare provider, and the healthcare consumer
presents new challenges.

The Biomedical Natural Language Processing at RANLP 2017 provided a venue for presentations of
current work in this field. The topics of papers presented at the workshop included information retrieval,
part-of-speech tagging, multi-part knowledge frames population, extraction of numerical described
values, resource creation, entity-centric information access, named entity recognition, confidence
estimation for protein-protein relation discovery and association rule mining of clinical text and the
biomedical literature.

The Workshop Organizers
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Document retrieval and question answering in medical documents.
A large-scale corpus challenge.

Eric Curea
Research Institute for Artificial Intelligence

“MIHAI DRAGANESCU”,
Romanian Academy
eric@racai.ro

Abstract

Whenever employed on large datasets,
information retrieval works by isolating
a subset of documents from the larger
dataset and then proceeding with low-level
processing of the text. This is usually car-
ried out by means of adding index-terms
to each document in the collection. In
this paper we deal with automatic docu-
ment classification and index-term detec-
tion applied on large-scale medical cor-
pora. In our methodology we employ a
linear classifier and we test our results
on the BioASQ training corpora, which is
a collection of 12 million MeSH-indexed
medical abstracts. We cover both term-
indexing, result retrieval and result rank-
ing based on distributed word representa-
tions.

1 Introduction

Automatic key-wording is the process of enrich-
ing text documents with pre-specified classes (top-
ics or themes). The primary motivation is that
in information retrieval one can easily use these
keywords for automatically filtering and obtaining
a subset of documents form a large-scale corpus,
documents that share common traits linked to their
domain, topic, title, publication source, authors,
etc. As such, automatic key-wording and docu-
ment indexing (based on these keywords) helps
people to find information in huge resources.

Currently, most of the on-line information is
available in the form of unstructured documents
and this is unlikely to change in the foreseeable fu-
ture. Though, several initiatives to force users into
manually labeling their on-line publications using
specialized markup have been proposed (one good

example is Google Markup Language1), scientific
publications are unlikely to be subject to such an-
notations, mainly because they employ printable
formats such as Postscript and PDF (which, in for-
tunate situations, can be converted into plain text).

Thus, NLP task such as unsupervised document
clustering represents a key-task in information re-
trieval. Due to the increased availability of doc-
uments in digital form and the ensuing need to
access them in flexible ways, content-based doc-
ument management tasks (collectively known as
information retrieval IR) have gained a promi-
nent status in the research community in the past
decade. The task of Document classification or
document categorization, the activity of labeling
natural language texts with thematic categories
from a predefined set, is very important and still
evolving thanks to increased applicative interest
and to the availability of more powerful hardware.

To accomplish the task of document classifi-
cation, an increasing number of computational
and statistical approaches have been developed
over the years, to mention a few: Suport Vector
Machines (SVMs) (Manevitz and Yousef, 2001;
Joachims, 1998), maximum entropy (Ratnaparkhi,
1998; El-Halees, 2015), word-distributional clus-
tering (Baker and McCallum, 1998), weighted K-
Nearest-Neighbor classification (Han et al., 2001;
Larsen and Aone, 1999), linear classifiers (Lewis
et al., 1996), Naive Bayes methods (McCal-
lum and Nigam, 1998), artificial neural networks
(Zhang and Zhou, 2006; Collobert and Weston,
2008; Lai et al., 2015), decision trees (Lewis and
Ringuette, 1994).

Our work is focused on automatic labeling of
medical text, using Medical Subject Headings
(MeSH)2 terms (Rogers, 1963) (see section 3)

1https://developers.google.com/search/docs/guides/intro-
structured-data - accessed 2017-05-18

2https://www.ncbi.nlm.nih.gov/pmc/articles/PMC35238/
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and information retrieval for question answering
based on the analysis of article abstracts (see sec-
tion 4). The training, evaluation and test datasets
used in the validation of our procedure are part of
the BioASQ3 (Tsatsaronis et al., 2012) evaluation
campaign.

2 Corpus description

The train set corpus contained articles from the
free on-line repository PubMed 4

The training data is composed of a very large
number of documents collected from PubMed,
which have been semi-automatically annotated
with MeSH terms, with the help of human cura-
tors. Aside from the MeSH terms, each entry in
the dataset contained important meta-data such as:
the title of the paper, the journal where the paper
was published, publishing year and the paper’s ab-
stract.

The training set is JSON-encoded and contains
the following fields for each article:

1. pmid : An unique identifier assigned to each
paper - used for internal evaluation purposes;

2. title : The original title of the article

3. abstractText : the abstract of the article,

4. year : the year the article was published,

5. journal : the journal the article was published,
and

6. meshMajor : a list with the major MeSH
headings of the article.

For clarity, we also provide an excerpt from the
training data, presenting the structure af each arti-
cle collected in the large-scale corpus:
{"articles": [{"journal":"journal..","

abstractText":"text..", "meshMajor
":["mesh1",...,"meshN"], "pmid":"
PMID", "title":"title..", "year":"
YYYY"},..., {..}]}

To offer a better view over the training data, we
must specify that the total number of articles is
12,834,585, published in over 9,000 journals, with
an average of 1,421.64 articles in each journal,
published from 1946 to 2016 with most articles
(over 600,000) selected from 2014, a distribution

- accessed 2017-05-18
3http://bioasq.org - last accessed 2017-05-09
4https://www.ncbi.nlm.nih.gov/pubmed/ - accessed 2017-

04-29

Table 1: Label distribution over training data
labeled documents distribution percentage

>1,000,000 10 0.04%
500,000 1,000,000 7 0.03%

100,000 500,000 137 0.49%
50,000 100,000 223 0.80%
10,000 50,000 2,240 8.07%
1,000 10,000 10,053 36.20%

<1,000 15,103 54.38%
total 27,773.00

of 12.66 average MeSHes per article, going from
the MeSH “humans” with an occurrence of over 8
millions to MeSHes like “tropaeolaceae” that only
occur once, yielding a MeSH coverage of 27,773
MeSHes composed either from a single word of a
construct like “magnetic resonance imaging”. All
this in a total of 20.5GB (plain/text) and 6.29GB
(compressed data). Table 2 provides generic in-
formation regarding frequent versus uncommon
MeSHes, while table 1 captures the “spread” of
the MeSHes throughout the training data.

As can easily be seen from table 1, 10 of the fre-
quent MeSHes like “humans”, “male”, “female”
or “animals”, are used to label more the 1M docu-
ments, only 7 fall within the 500K-1M range and
360 between 50K and 500K (we further refer to
them as category A). On the opposite side, 2K
MeSHes are found in 10K-50K documents, 10K
MeSHes in 1K-10K documents and more than
15K MeSHes have an occurrence of less than 1K
(category B). The high occurring MeSHes (cate-
gory A) represent less than 2% of the total number
of labels, which indicates that in most cases any
ML system will most likely not be able to model
the rest of 98% of the labels based on this cor-
pus. To clarify our previous statement, it is ex-
pected that most classifiers will have a small recall
for 98% of the labels, mainly because the objec-
tive of minimizing the “overall” accuracy is eas-
ily achieved by preferring not to emit any label
rather than incorrectly classifying documents with
bad labels and only for less than 2% of the total
number of labels the systems will have a chance
of a high recall.

3 Automatic MeSH labeling

Currently, there are 28,489 descriptors in MeSH
2017 that were used in the creation of the training
data. However, due to the unbalanced occurrence

2



Table 2: MeSH distribution
ID MESH count ID MESH count
1 humans 8,103,280 27 kinetics 366,997
2 male 5,351,269 28 cell line 331,436
3 female 5,169,536 29 surveys and questionnaires 316,552
4 animals 3,932,184 30 rna+messenger 314,638
5 adult 3,119,705 31 dose-response relationship+drug 313,386
6 middle aged 2,782,688 32 reproducibility of results 285,023
7 aged 1,936,405 33 infant+newborn 283,249
8 adolescent 1,219,944 34 mutation 278,419
9 rats 1,116,126 35 united states 272,593
10 mice 1,045,215 36 brain 269,598
11 child 826,020 37 rats+sprague-dawley 265,472
12 time factors 793,584 38 sensitivity and specificity 264,091
13 aged+80 and over 636,261 39 prognosis 259,335
14 molecular sequence data 590,276 40 in vitro techniques 258,033
15 treatment outcome 571,489 41 age factors 254,441
16 retrospective studies 547,781 42 liver 248,866
17 child+preschool 510,539 ........ ........
18 young adult 494,101 ephemerovirus 5
19 risk factors 450,495 ........ ........
20 follow-up studies 447,572 zigadenus 4
21 cells+cultured 428,059 ........ ........
22 amino acid sequence 395,146 cytophagaceae infections 3
23 prospective studies 394,813 ........ ........
24 pregnancy 392,281 duboisia 2
25 infant 387,000 ........ ........
26 base sequence 385,031 childhood-onset fluency disorder 1

of terms combined with the large scale of the cor-
pus, we ran our experiments on a smaller sub-set
of MeSH terms, composed of only 154 most fre-
quent items.

In the classification process we took into ac-
count as much information as we can and have
access to, about each document in the large-scale
corpus. The title of a document usually holds key
information about the content of the document.
The journal in which it was published is likely
to carry weight in the label assigning process as
only specific types of documents can be published
in certain types of journals. The year in which
the document was published will tell the system if
the information retrieved from the document has
a chance of not being up to date or it might be
completely outdated and superseded by more re-
cent research, in which case the system should at
least try to see if newer publications might hold
better results or more important supplementary in-
formation. The abstract text is the place where
the system can spend most processing time and

apply as many tests, approximations and refine-
ments, because this is the place where most arti-
cles condense the biggest amount of relevant in-
formation about the content of the document. Of
course finding possible relevant information in the
abstract text is only part of the equation. The
more important part is determining relevant rela-
tions between different relevant lexical tokens, the
location of the information segments, distance be-
tween the different relevant lexical tokens inside
the abstract, number of occurrences, similarity to
the information determined in the question (W2V,
cosine similarity(Steinbach et al., 2000)).

All the input features were treated in a bag-of-
words manner, from which we removed any fea-
ture (word) with an occurrence rate lower than
100. This threshold of 100 was selected after
testing different limits that yielded either too few
features left to test with or too low occurrence
rate for the feature to be relevant. Initially, our
training data contained 7,466,119 unique features
and the pruning process reduced this number to
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only 123,255. For the classification task we em-
ployed an ensemble of linear classifiers. Each pos-
sible output MeSH was associated with a classi-
fier, which was trained in a 1-vs-all style to predict
if the system should or should not assign that la-
bel, based on the input features. The output of the
linear model ranged from -1 (do not assign a la-
bel) to 1 (assign a label) and was computed using
Equation 1, with w computed using the delta-rule
(Equation 2):

y =
n∑
1

wn · xn (1)

∆wk = α · (t− y) · xk (2)

where
y is the output of the classifier
t is the desired output of the classifier (-1 or 1)
xi is the ith input feature
wi is the weight of the i-th input feature
α is the learning-rate (set to 10−3)

When we trained our ensemble of classifiers we
divided our training data into 9/10 for training and
1/10 for development, while trying to preserve
as best as possible the initial distribution for
each of the labels in both sets. Training was
done iteratively (compute new value for w using
the training set and measure accuracy on the
development set) and the stopping condition was
not to have any improvements on the development
set for more than 20 iterations. At the end of the
training process we kept the w that achieved the
highest accuracy on the development set.

Table 3: Labeling results
System MiP MiR Acc.
Sequencer 0.0920 0.0964 0.0494
Default MTI 0.6148 0.6286 0.4594
Our System 0.7681 0.1472 0.1381
DeepMeSH4 0.6671 0.6289 0.4839
MZ1 0.6495 0.3985 0.3299
DeepMeSH3 0.6898 0.6170 0.4877
DeepMeSH2 0.6895 0.6432 0.5059
DeepMeSH1 0.7025 0.6282 0.5025
DeepMeSH5 0.7198 0.6122 0.5024

Table 3 shows the accuracy (Acc), Micro Preci-
sion (MiP) and Micro Recall (MiR) of our system,
measured on one of the datasets. It also offers a

comparative view between our methodology and
the other systems present in the competition. We
must mention that the overall performance figures
are measured using all the available MeSHes, not
the pruned subset.

4 Result ranking

For this we take each lexical component of the key
set of data extracted from the corpus and we try
to find if the classified documents from the cor-
pus approximate to possible synonyms of lexical
component. For each lexical component of the
key set of data extracted from the question, we
calculated a list of lexical elements that can be
considered similar in meaning using ”cosine sim-
ilarity” computed over distributed word represen-
tations (Mikolov et al., 2013). The vectors (100-
dimensional) were computed using the word2vec5

tool on a specific subset of Wikipedia combined
with additional raw text resources provided as part
of the BioASQ challenge. In order to compile the
subset from Wikipedia we followed a simple boot-
strapping procedure:

1. We downloaded the latest Wikipedia XML
Dump at that date from the official web-site,
on which we run a version of WikipediaEx-
tractor6, that was modified to preserve cate-
gories;

2. We seeded a list of categories, using the first
level of categories on the Wikipedia site for
the “Biomedical” main category;

3. We iterated 3 times through the entire cor-
pus and we consolidated our category list, by
adding categories that were associated with
our initial category list, each time updating
our seeded list;

4. We kept all documents that had at least one
category from our final category list.

Given a “question” our IR process is: (a) we
extract a list of keywords from the query, by re-
moving function words from using a predefined
dictionary; (b) we use the keywords to retrieve the
top 1M documents from the initial corpus; (c) we
re-rank our results and obtain a list with the top-
10 most relevant documents. Document ranking

5https://github.com/dav/word2vec - accessed 2017-04-05
6https://github.com/bwbaugh/wikipedia-extractor - ac-

cessed 2017-01-28
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Table 4: Test-set results
System Name Mean precision Recall F-measure Map GMAP

Top 100 Baseline 0.2460 0.2845 0.1333 0.1606 0.0028
Top 50 Baseline 0.2470 0.2591 0.1920 0.1503 0.0024
fdu 5b 0.1865 0.2228 0.1791 0.1300 0.0084
Our System 0.4000 0.2222 0.2857 0.1238 0.1238
MCTeamMM 0.2266 0.1481 0.1249 0.0892 0.0005
MCTeamMM10 0.0326 0.1481 0.0436 0.0892 0.0005
Wishart-S1 0.0465 0.0484 0.0350 0.0237 0.0001

Figure 1: Distribution of publications each year

Figure 2: Distribution of words in articles

is performed using Equation 3, which is designed
to take into account keyword synonymic coverage,
but currently ignores synonymic frequencies in the
text (in our empirical experiments we found that
introducing this factor decrease the overall preci-
sion of the system - in our opinion, mainly because
word-embeddings are prone to capturing contex-
tual similarities, rather than actual synonymic be-
havior).

Sd =
1
k
·

k∑
i=1

maxm
j=1(cos(ti, dj)) (3)

where
Sd - is the relevance of document d
k - is the number of keywords in the query
m - is the number of words in the document
ti - is the word embedding for term i in the query
dj - is the word embedding for term j in the
document

Table 4 shows the precision, recall and F-score
of our system, measured on one of the datasets.
It also offers a comparative view between our
methodology and the other systems present in the
competition. We must mention that the overall
performance figures are measured using all the
available MeSHes, not the pruned subset.

5 Snippets

Usually not all the text in the retrieved abstract is
part of a good answer to a given question. So find-
ing the most relevant, shortest part of the abstract
was nest step.

To approximate the shortest span of text in each
abstract of the documents, that represents the best
response to the question, we selected a list of all
the lexical tokens in the abstract text that corre-
spond or might have generated the relevant label.
At first glance, the snippet would be starting from
the beginning of the first sentence that contains a
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token from the list and finishing at the end of the
last sentence that contains a token from the list.

Of course this list has a high probability of hav-
ing duplicates. These duplicates have no value for
detecting the shortest relevant text. So we calcu-
late from the current abstract, the shortest span of
text that still contains all of the lexical tokens but
we ignore any duplicates in the list.

To help explain the previous statement we will
use the following example:
"document": .... [token_1]....[token_1

]...[token_2].....[token_1]....[
token_3].....[token_4].....[token_5
]....[token_1] ...

It can easily be seen in the example that the first
iteration of “token 1” holds no value for the pur-
pose of finding the shortest relevant span of text an
neither does the second iteration even though it is
position in closer proximity to another token from
the list. The list is not in any way ordered so the
placement of the second token: “token 2” in front
of the first token “token 1” is irrelevant. The exis-
tence of a different token in front of the current to-
ken: “token 2” before “token 1” only means that
this iteration of “token 1” is a viable candidate for
the shortest relevant span of text. Finally the final
iteration of “token 1” has no other tokens placed
after it so we considered this iteration to hold less
value for a snippet. No other token had a duplicate
in this example so in this case the shortest most
relevant span of text was:
"snippet": [token_2].....[token_1]....[

token_3].....[token_4].....[token_5]

It is worth noting that there were of course cases
when the system would present the snippet as be-
ing the same as the entirety of the abstract text.

6 Conclusions and future work

In this article we presented a “biomedical” ori-
ented system that automatically assigns MeSH la-
bels to documents in a large-scale corpus. Our ap-
prach is based on a linear classifier, trained in a
1-vs-all style for each possible MESH.

The system then retrieves answers from said
corpus for questions relevant to the medical field.
Each question yields a number of “n” best ranked
documents that relate to the question. We achieve
this by first selecting the relevant lexical tokens
from the questions. Then we use Word2Vec for
100 length vectors in order to calculate the cosine
similarity to approximate “x” closest lexical con-
cepts for each of the tokens from the question.

Our system also provides a corresponding list of
“n” snippets from the best ranked documents, the
shortest span of text which contain the informa-
tion from the abstract most relevant for the current
question. This is done by discarding any sentence
from the abstract text that does not contain any to-
ken from a determined list or only contains low
relevance duplicates of tokens from said list.

Currently we do not deal with determining and
extracting lexical dependencies between words
and we only focus on relevant-document retrieval.
However, our future development plans include
extending our system to be able to answer yes/no,
factoid and item-list questions. Additionally we
plan to include multilingual data from various
sources and investigate cross-lingual techniques
for document retrieval and machine translation for
delivering the cross-lingual results in the user’s na-
tive language.
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Abstract

This paper presents the adaptation of the
Hidden Markov Models-based TTL part-
of-speech tagger to the biomedical do-
main. TTL is a text processing platform
that performs sentence splitting, tokeni-
zation, POS tagging, chunking and Na-
med Entity Recognition (NER) for a nu-
mber of languages, including Romanian.
The POS tagging accuracy obtained by the
TTL POS tagger exceeds 97% when TTL’s
baseline model is updated with training
information from a Romanian biomedical
corpus. This corpus is developed in the
context of the CoRoLa (a reference corpus
for the contemporary Romanian language)
project. Informative description and sta-
tistics of the Romanian biomedical corpus
are also provided.

1 Introduction

Natural Language Processing (NLP) is one of the
key technologies that can be employed to extract
valuable information from unstructured text (e.g.
discharge summaries, clinical notes, medical refe-
rence books, research papers, medical blog posts)
and transform it into a desired form to support ac-
tivities related to the healthcare domain.

NLP technologies have been adapted to the bi-
omedical domain and applied on a vast amount
of clinical data to enhance the research process
and to extract relevant information from textual
data. For example, clinical notes have been used
for identifying cardiovascular risk factors (Ab-
dulrahman and Meystre, 2015), electronic medi-
cal records have been used for detecting diabetes
mellitus (Chung-Il et al., 2017). Jackson et al.
(2017) applied NLP to extract symptoms of se-
vere mental illness from clinical text. NLP tools

have been proven to be an efficient way to enhance
the identification on Alzheimer’s disease (Shibata
et al., 2016) and even the Human Genome project
used NLP techniques in order to explore the rela-
tionships between biomedical literature and genes
sequences (Yandell and W. H. Majoros, 2002).

A typical NLP pipeline consists in sentence de-
limitation, tokenization, part-of-speech (POS) ta-
gging, lemmatization and parsing. More advan-
ced NLP pipelines will perform NER and/or word
sense disambiguation.

POS tagging (the process of labeling a token
with a part of speech tag) is one of the initial pipe-
lined components and it is an important step that
performs morphosyntactic disambiguation. The-
refore, the quality of the POS tagging is very im-
portant because cascading errors generated in POS
tagging processes affect the overall performance
of NLP pipelines. Consequently, it is very impor-
tant that a POS tagger performs as optimally as
possible.

The accuracy of a POS tagger is expected to be
high (e.g. at least 97% for English) when the ta-
gged text is similar, domain-wise, to the tagger’s
training data, but when the tagger is used on texts
belonging to significantly different domains than
the ones the tagger was trained on (e.g. train on
newspaper articles and test on biomedical docu-
ments), its performance can degrade significan-
tly. Ferraro et al. (2013) showed that the accuracy
of state-of-the-art English POS taggers trained on
news texts plummeted from 97% to 85% when
POS tagging has been applied to clinical narrati-
ves, mainly because biomedical texts have diffe-
rent linguistic characteristics. Therefore the target
domain adaptation of the POS tagger is needed.

Ferraro et al. (2013) note that there are multiple
POS tagger domain adaptation techniques, out of
which the simplest one is what they call “source-
target labeled data aggregation” which refers to the
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training of a POS tagging model based on a la-
beled corpus obtained from both the source and
the target domains. A simplified version of this
approach is the approach we follow here in order
to adapt the baseline model of the trigram HMM-
based TTL POS tagger (Ion, 2007) to Romanian
biomedical POS tagging.

To obtain good POS tagging results with the
source-target labeled data aggregation domain
adaptation method, high-quality training data in
both the source and the target domains is vital for
a good performance of the POS tagger. Consequ-
ently most of the work concentrates on building
high-quality training corpora, which are typically
hand-made and slow to produce and which are,
for this reason, very hard to find. In general, the
lack of sufficient data in biomedical domain re-
mains a barrier for biomedical NLP, especially for
under-resources languages. Even though at the in-
ternational level biomedical resources have been
developed (e.g. HIMERA - a collection of histori-
cal medical documents manually annotated at se-
mantic level with information relevant for public
health, BMC - a corpus which contains full medi-
cal articles provided by BioMed Central, GENIA
- a collection of 2000 biomedical abstracts anno-
tated at syntactic and semantic level), at a national
level (at least in Romania) it is very difficult to ob-
tain texts for specialized corpora in the biomedical
domain due to copyright laws and lack of biomedi-
cal literature published in Romanian language that
is readily available in electronic format.

Efforts to improve the availability of Romainian
biomedical training data for POS tagging are cur-
rently carried on. The most important is the Co-
RoLa project which was started in 2012 by the
Romanian Academy Research Institute for Arti-
ficial Intelligence “Mihai Drăgănescu” (RACAI)
and the Institute for Computer Science in Ias, i.
It aims to create a reference corpus of the con-
temporary Romanian language (CoRoLa) (Miti-
telu et al., 2014), which will be useful for different
types of NLP tasks, including POS tagging.

In what follows, we will briefly review related
word in POS tagging domain adaptation for the
biomedical domain (Section 2), we will introduce
the Romanian biomedical corpus that we used to
adapt TTL to the biomedical domain (Section 3),
we will briefly describe TTL (Section 4) and we
will present our initial experiment in Romanian bi-
omedical POS tagging (Section 5). The paper ends

with our concluding remarks (Section 7).

2 Related Work

Domain adaptation received significant attention
from the NLP research community and multiple
approaches have been developed to improve the
tagging accuracy and to reduce the errors cau-
sed by out-of-vocabulary words. A very common
approach used for domain adaptation is to com-
bine both the source and the target training data to
train a new model. This method was used by Co-
den et al. (2005) when an HMM POS tagger was
trained on both news and a medical corpus of cli-
nical notes. After this experiment they reported
an accuracy of almost 93% when the tagger was
tested on the medical test set, compared to a little
over 87% when the tagger was trained on the news
corpus and tested on the medical test set.

For the GENIA POS tagger, Tsuruoka et al.
(2005) presented several experimental results for
domain adaptation on GENIA, PennBioIE and
Wall Street Journal (WSJ) corpora. POS tagging
performances has been evaluated for seven diffe-
rent combinations of the corpora as the training
data. When the tagger was trained on WSJ corpus
(without the distinction between nouns and proper
nouns) and tested also on a test set extracted from
WSJ corpus (in-domain testing), the accuracy was
97.20%, but when the tagger was applied on test
sets extracted from biomedical corpora (out-of-
domain testing), the accuracy dropped significan-
tly: 91.55% on GENIA and 90.51% on PennBi-
oIE. On the other hand, when the GENIA tagger
was trained both on WSJ and GENIA corpora, it
achieved an accuracy of 98.32% on the GENIA
test set and an accuracy of 96.96% on the WSJ test
set (and a lower accuracy on PennBioIE test set,
91.98%). This shows that domain adaptation is
worth doing even though in-domain accuracy may
drop a little.

cTAKES tagger is an example of a biomedical
tagger that demonstrates the variability of the bi-
omedical domain. This tagger was trained with
Mayo Clinic’s notes and tested on a set of clinical
notes from Kaiser Permanente Southern Califor-
nia (KPSC) on which it obtained an accuracy of
88.1%. Moreover, the cTAKES tagger tested on
set of clinical notes from the University of Pitt-
sburg Medical Center (UPMC) achieved an accu-
racy of 88.3%. This is to show that POS tagging in
the biomedical domain is more difficult than, e.g.
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news POS tagging, mainly because of the exten-
sive lexicon of the domain.

Finally, we present two experiments demonstra-
ting that good accuracy can be obtained with in-
domain biomedical data even with small training
sets. Smith et al. (2004) trained the MedPost ta-
gger on 5,716 manually tagged sentences taken
from Medline abstracts within the Genomics do-
main and achieved an accuracy of 97.43% on 1000
sentence test set extracted also from MEDLINE
abstracts. In order to train the Brill tagger on bio-
medical domain, Campbell and Johnson (2001) ta-
gged by hand 100,000 words from a corpus of dis-
charge summaries, 90% of the hand tagged corpus
was used to train the tagger an the remaining 10%
was used to test the tagger. This process was repe-
ated ten times and achieved an accuracy of 96.9%,
each time using a different 10% as the test set.

3 Corpus Structure

In order to perform domain adaptation we have de-
veloped a domain-specific training corpus, beca-
use sub-domain languages present distinct linguis-
tic features, usually not found in general language,
in this case Romanian language.

The process of collecting the texts was not an
easy task, firstly because of the intellectual pro-
perty restrictions and secondly because in general,
biomedical literature is published in English and
not in the Romanian language. At the end of this
process the Romanian medical corpus contained
texts from different sources such as medical books
published at the Romanian Academy Publishing
House and Polirom publishing house, free medi-
cal online resources, medical blogs, online courses
made for medical students.

The biomedical corpus has evolved from a co-
llection of texts extracted from different biome-
dical sub-domains such as: cardiology, endocri-
nology, diabetes, oncology, surgery, genetics, ne-
phrology, neurology, psychiatry etc. The textual
resources available in the corpus were initially
available in different formats such as .doc and un-
protected .pdf and they had to be converted into
a raw text format in order to be annotated by our
processing tools (Tufiş et al., 2008). The conver-
sion of the files involved a boilerplate removal step
in which footers, headers, page numbers, figures,
tables, footnotes, etc. have been removed. For this
step we used the tool designed by (Moruz and Scu-
telnicu, 2014). In order to improve the linguistic

annotation we considered only texts with correct
diacritical characters, encoded in UTF-8.

The Romanian biomedical corpus used for do-
main adaptation of the TTL POS tagger contains
about 206,020 sentences and 4,390,707 million to-
kens (words and punctuation) distributed in more
than nine medical sub-domains (see above) ex-
tracted from academic books and journals and
one which contains information from different free
medical online resources such as medical blogs
and Romanian medical publications.

The resources extracted from online sources
have not been grouped into medical categories be-
cause most of them belong to more than one me-
dical category and medical expertise was needed
in order to fulfill this task. Furthermore the POS
tagging step is not affected by this lack of classi-
fication. All the texts were split into tokens, POS
tagged and lemmatized with the baseline model of
TTL (see Section 5).

Table 1 shows some statistics of the automati-
cally POS tagged biomedical corpus: we counted
all tokens (words plus punctuation), words (func-
tional words and content words), unique lemmas
and sentences. Content words also included ab-
breviations because these represent an important
feature of the biomedical texts. The punctuation
count is obtained by subtracting the words count
from the tokens count (Table 2). From a statisti-
cal point of view, the corpus is balanced in terms
of tokens per sentence, content words per sentence
and punctuation per sentence (Table 2 and Table 3)
when comparing sub-domains.

Table 3 shows that the texts obtained from on-
line resources contain the highest use of content
words per sentence; at the other end the texts
from endocrinology domain use the lowest num-
ber of content words. An interesting fact is that the
average number of punctuation per sentence con-
tained in the texts extracted from online sources
remains in compliance with the average number of
punctuation used in academic medical literature.

In Table 4 the distribution of content words is
presented among the POS tags types. While on-
line resources texts make use of more nouns and
less adjectives, the other medical sub-domains use
less nouns and more adjectives. A characteristic
specific to the biomedical domain, which it is also
shown in table 4 is represented by the high use of
the total nouns and adjectives.
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# tokens, punctuation included 4,390,707
# words 3,750,242
# unique lemmas 101,348
# sentences 206,020
average tokens per sentence 21.31
average words per sentence 18.20
average punctuation per sentence 3.10

Table 1: Statistics over the Romanian medical
corpus.

4 Tokenizing, Tagging and Lemmatizing
(TTL) Platform

TTL is a Perl module supporting Romanian, En-
glish, French and Bulgarian, with the following
functionalities: sentence splitting, tokenization,
POS tagging, lemmatization, chunking and Na-
med Entity Recognition (NER).

TTL’s tokenizer takes two input parameters (the
code of the language and the sentence) and returns
a list of tokens. Moreover the tokenization proce-
dure is language independent and identifies clitics,
contractions and multiword expressions (MWEs),
provided that language-dependent resources exist
(i.e. list of MWEs and affix words that should be
split).

The POS tagger is a heavily-improved reimple-
mentation of the Hidden Markov Models (HMM)
tagger presented in Brants (2000). It uses the
tiered tagging technology (Tufis, , 1999; Ceaus, u,
2006) for a more accurate POS labeling with a
large tagset: the MSD tagset 1. The Romanian
MSD tagset has 736 labels and the general pur-
pose Romanian language POS tagging accuracy is
over 98% with this tagset (Tufis, , 1999).

Lemmatization is achieved after the POS ta-
gging process is complete. TTL lemmatizer uses
a large human-validated Romanian inflected lexi-
con, currently holding 1,152,506 entries. For the
out-of-dictionary words, the TTL lemmatizer se-
lects the most probable lemma provided by a five-
gram letter Markov Model-based guesser (see Ion
(2007) for details).

Chunking is another functionality of the TTL
platform and it is based on a set of regular ex-
pressions applied on sequences of POS tags. The
TTL chunker recognizes nominal, verbal, adjecti-
val, adverbial and prepositional phrases.

1http://nl.ijs.si/ME/V4/msd/html/

5 Adapting TTL to the Biomedical
Domain

As already stated in the Introduction, we attemp-
ted to adapt the baseline model of the Romanian
TTL POS tagger to the biomedical domain by fo-
llowing the “source-target labeled data aggrega-
tion” paradigm. In our case, we have updated the
baseline model’s parameters by training on a sam-
ple of the Romanian biomedical corpus, for rea-
sons to be explained below.

It is a well-known fact that the performance of
a POS tagger depends crucially on the quality of
the labeled corpus on which it trains. Thus, the
baseline model for Romanian POS tagging that
TTL uses is based on training on news (some
“Adevărul” and “România Liberă” issues, 98,194
tokens) and fiction (Orwell’s “1984”, 118,357 to-
kens) corpora whose POS labeling was carefully
checked by trained linguists, word by word (Tufiş,
2000).

Our initial experiment in biomedical POS ta-
gging domain adaptation focused on experimenta-
lly verifying the assumption that we can get good
results with an in-domain corpus whose POS la-
beling is semi-automatically corrected. That is,
what results do we get if the biomedical corpus
that is used to adapt TTL to the domain is not che-
cked word for word but is corrected using some
semi-automatic procedures (to be described be-
low) whose output is checked by the trained lin-
guist.

Since we could not hope to manually check
4.4M tokens as our Romanian biomedical corpus
has (nor did we want to commit to such a task),
we performed a random sampling of that corpus in
order to obtain reasonable-sized train and test cor-
pora. We concluded that, with our resources, we
could check around 600K tokens, which, accor-
ding to the English domain adaptation literature
cited above, is a reasonable size. Thus, after split-
ting our sample into train and test sets, the train set
contained 545,977 tokens (words and punctuation)
and the test set contained 60,520 tokens, which is
about 10% of the part we selected. The selection
was done randomly, but enforcing the following
conditions:

• We have sentences of all lengths from the
Romanian biomedical corpus (short, average
and long);

• All sentences have Romanian diacritics in
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Sentences Tokens Content words Punctuation
Online resources 52,708 1,146,052 772,564 151,189
Cardiology 35,505 754,394 418,619 110,850
Surgery 51,367 989,335 550,037 156,140
Diabetes 33,538 775,017 411,393 114,123
Oncology 22,746 523,568 281,331 78,693
Endocrinology 10,156 202,341 112,826 29,470
Total 206,020 4,390,707 2,546,770 640,465

Table 2: Statistics on medical domains

Sentences Tokens Content Punctuation
Online resources 52,708 21.74 14.65 2.86
Cardiology 35,505 21.24 11.79 3.21
Surgery 51,367 19.26 10.65 3.03
Diabetes 33,538 23.10 12.26 4.44
Oncology 22,746 23.01 12.36 3.45
Endocrinology 10,156 19.92 11.10 2.90
Total 206,020 21.31 12.34 3.10

Table 3: The average number of tokens, content words and punctuation per sentence by biomedical
subdomain

place and are written using the Roma-
nian Academy Romanian writing reform (i.e.
using ‘â’ instead of ‘ı̂’ inside words);

• There are no duplicate sentences.

Both the train and the test sets were automati-
cally POS tagged with the TTL’s baseline model.
The test set was manually checked, word by word,
by a trained linguist. The manual correction pro-
cedure involved reading each sentence from the
test set, word by word, and making sure that the
POS labellings are correct (the test set had to be
thoroughly checked because the POS tagger per-
formance was going to be measured against it).

For the train set, to speed up the correction
process, we adopted the following semi-automatic
approach:

• We extracted the list of unknown words with
all their inflected forms (7,816 unique word
forms) and checked their POS labellings, ad-
ding alternate analyses where it was neces-
sary (e.g. adding a noun analysis for an exis-
ting adjective analysis);

• Noticing that TTL does not (usually) assign
the wrong POS to a word (e.g. if a word is
a noun, TTL will recognize it as such but,
for unknown words, it may give the wrong

gender or case), we automatically replaced
the POS labels of all unknown words in the
train set with the corresponding POS labels
from the curated unknown list. We were thus
able to automatically fix 26,184 occurrences
of unknown words in the train set;

• We built a TTL POS tagging model only from
the train set and re-tagged the train set with it
(we call this a ‘biased evaluation’). We then
inspected manually all the differences in POS
labeling between the original tagging and the
biased tagging. Some more (about 2% of the
train set) inconsistencies were fixed this way;

• We also corrected every error that we saw
in the train set, but without going through it,
word by word.

Tables 5 and 6 present the TTL POS tagger ac-
curacy on the biomedical test set. From Table 5 we
see that general POS tagging accuracy degrades a
little and this can be explained by the fact that the
biomedical train set is not yet fully correct when it
comes to POS labeling.

The baseline TTL model is trained over texts
that were corrected at word-level by trained lin-
guists while our biomedical train set was mostly
automatically corrected with only a small part be-
ing manually validated. That the biomedical train
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Nouns Verbs Adjectives Adverbs Abbreviations
Online resources 477,208 137,729 120,382 24,717 12,528
Cardiology 224,758 70,684 102,039 14,717 6,421
Surgery 284,549 100,567 138,777 19,695 6,449
Diabetes 222,905 82,638 81,327 17,559 6,964
Oncology 153,955 53,357 58,350 9,528 6,141
Endocrinology 59,776 21,074 25,262 4,601 2,113
Total 1,423,151 466,049 526,137 90,817 40,616

Table 4: POS statistics for content words in each biomedical sub-domain.

Errors Accuracy
Baseline model 1,068 98.23%
Biomedical model 1,310 97.83%

Table 5: Overall TTL accuracy on the test set

Errors Percent
Baseline model 486 45.50%
Biomedical model 448 34.19%

Table 6: Errors on biomedical terminology

set still contains general language POS annotation
errors becomes evident when the most frequent er-
rors (on the test set) are identified (which are not
produced by the baseline model):

• Verb ‘a fi’ (English ‘to be’) can occur as an
auxiliary (‘a fi’ plus past participle) or main
(61 errors);

• Verb ‘a avea’ (English ‘to have’) can also oc-
cur as an auxiliary (when forming the present
perfect tense) or main (15 errors).

Table 6 shows the benefit of doing domain adap-
tation, even with a minimally corrected in-domain
corpus: the percentage of errors relating to biome-
dical terminology (i.e. nouns, main verbs, adjec-
tives and adverbs that are specific to the domain)
is smaller when we use the adapted POS tagging
model. At this point, if the degradation in general-
purpose POS tagging is acceptable (0.4% in our
case) the much lower error rate (11.31% in our
case) in biomedical terminology POS tagging co-
uld be of help in applications such as biomedical
NER.

6 The Availability of the Data

After the train set and the test set will be che-
cked in detail (”word by word”) both of them

will be freely available for download2 and non-
commercial use. Special use-cases require license
permissions from the author.

The biomedical corpus will be available in the
context of the CoRoLa project copyright agree-
ment signed with the publishing houses and with
the editorial offices representatives. The whole
corpus will be available to the public through Ko-
rAP platform (Banskiand et al., 2013), but will
not be downloadable. The KorAP platform allows
multiple linguistic types of searches in the corpus.
However, all the results of the interrogation of the
corpus outside the scope of the copyright restric-
tions will be downloadable.

7 Conclusions and Future Work

This paper presents a newly created text corpus ai-
med at providing support for NLP on biomedical
text and an initial experiment about the adaptation
of the TTL POS tagger to the biomedical domain.
Currently our text corpus is still under develop-
ment, but the available data and the biomedical
TTL POS tagger can already be considered impor-
tant resources in order to perform more advanced
NLP tasks in the Romanian biomedical domain.
To the best of our knowledge, the Romanian bio-
medical corpus is the first of its kind.

Our initial experiment was promising in the
sense that, with minimal POS labeling correction
efforts, we were able to improve the accuracy of
the tagger where it matters most for other biome-
dical applications using POS tagging: the biome-
dical terminology. Thus, the error rate of biome-
dical terminology was reduced by 11.31%. We
plan to fully validate the biomedical train set, with
the help of trained linguists, and repeat the experi-
ments to ensure that we obtain comparable (with
the baseline) general language POS tagging ac-
curacy (over 98% accuracy) while lowering even

2http://slp.racai.ro/index.php/resources/
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more the error rate on biomedical terminology.
Compared to other corpora used for domain

adaptation, our biomedical train set is larger
(545,977 tokens) than most of the POS train sets.
Another important characteristic of the biomedi-
cal corpus used for the adaptation of the TTL POS
tagger is the variability of its lexicon: it contains
words from five major biomedical sub-domains
and a collection of texts extracted from online so-
urces. Thus, we think that any POS tagger trained
on it will perform better on a wider range of Ro-
manian biomedical texts.

The train and test sets will also be annotated
with biomedical named entities and parsed with
our Romanian Universal Dependencies parser de-
veloped in the SSPR project (Mititelu et al., 2016).
Thus, we will have a Romanian biomedical corpus
that can be used as training data for other useful
NLP tasks such as biomedical terminology identi-
fication, biomedical NER, biomedical text mining,
etc.
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Abstract

We consider the problem of populating
multi-part knowledge frames from textual
information distributed over multiple sen-
tences in a document. We present a corpus
constructed by aligning papers from the
cellular signaling literature to a collection
of approximately 50,000 reference frames
curated by hand as part of a decade-long
project. We present and evaluate two ap-
proaches to the challenging problem of re-
constructing these frames, which formal-
ize biological assays described in the lit-
erature. One approach is based on clas-
sifying candidate records nominated by
sentence-local entity co-occurrence. In the
second approach, we introduce a novel vir-
tual register machine that traverses an arti-
cle and generates frames, trained on our
reference data. Our evaluations provide
evidence that best performance in the task
ultimately hinges on an integration of in-
formation distributed over multiple sen-
tences.

1 Introduction

Biological event and relation extraction have been
the focus of considerable study in recent years,
resulting in the availability of annotated cor-
pora (Kim et al., 2003; Pyysalo et al., 2007; Kim
et al., 2008; Thompson et al., 2009). In the interest
of replicability and progress on critical challenges,
such resources typically decompose the hard prob-
lem of factual understanding into several simpler
problems, such as entity recognition, binary rela-
tion detection, and co-reference resolution.

This methodology is subject to several criti-
cisms. The reliance on thorough annotation im-
poses overheads that prevent rapid progress. The

targeting of a fixed set of simplified, typically
binary relations does justice neither to the com-
plexity of information expressed in a typical sen-
tence, nor to the biological processes under discus-
sion. And the methodology places an emphasis on
pieces of information amenable to expression in
individual sentences, leaving untouched informa-
tion that can be assembled only through traversal
of multiple sentences.

In this paper we address the problem of con-
structing multi-slot knowledge frames from the
technical literature on cellular signaling networks.
The frames in our study are a faithful representa-
tion of assays reported in this literature, called da-
tums, with only approximate localization to spe-
cific textual regions. We have no one-to-one map-
ping between frames and sentences, no guaran-
tee that the slots of a frame co-occur in a single
sentence, and no universal presentational conven-
tion governing the sequence of slot-relevant ex-
pressions. Nevertheless, we seek to learn proce-
dures for populating frames in new documents.

Success in this endeavor would have significant
practical impact. If we can automate the sep-
aration of experimental evidence from common
knowledge and speculation, we have the means
to construct a high-quality biomedical resource of
use to both experimental and computational biolo-
gists. Our efforts, for example, ultimately seek to
automate the maintenance and extension of high-
fidelity machine models of signaling pathways as-
sociated with Ras-driven human cancer.

We offer three contributions. First, we describe
a problem of clear biomedical significance that in-
volves synthesis of information distributed across
a document, one that poses pertinent challenges to
the current practice of machine reading. Second,
we describe and evaluate an approach (the frame
classification approach) that formalizes this prob-
lem as a binary classification of frames nominated
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by protein pairs co-occurring in sentences. We
provide evidence that good performance on this
problem requires attention to how entities are ref-
erenced across a document, even in multiple doc-
uments, not just in the nominating sentence. Fi-
nally, we describe and evaluate an approach (the
register machine approach) that attempts to correct
deficiencies of the frame classification approach,
specifically its limiting reliance on sentence-local
juxtaposition of frame slot elements. This ap-
proach formalizes the frame extraction problem
as learning the best sequence of instructions for
frame generation through document traversal.

2 Related Work

Progress in biomedical information extraction
(BioIE) is measured against shared annotated cor-
pora that decompose the problem into entity ex-
traction and sentence-level relation and event de-
tection (Kim et al., 2003; Pyysalo et al., 2007;
Kim et al., 2008; Thompson et al., 2009). The
structure of these tasks has remained remarkably
stable over the years, differing in some important
ways from the task addressed in this paper. Most
notably, the canonical BioIE task is highly local-
ized and mostly agnostic to discourse context. The
objective is to determine whether a single sen-
tence expresses some event of interest–gene ex-
pression, phosphorylation, regulation, etc.–and, if
so, what roles the entities appearing in the sen-
tence play in the putative event. The “events” de-
tected in this fashion are divorced from their dis-
course context (modulo coreference resolution),
although some attention has been paid to epis-
temic qualifications, such as negations and spec-
ulations (Kim et al., 2011). We have posed our-
selves a more focused task—extract the experi-
ments described in a paper—and are forced to do
without reliable sentence-level annotation.

There is no doubt that our system must re-
spond to some of the same expressions that are
addressed in some of these shared tasks. In par-
ticular, the Genia Event Extraction Task (Kim
et al., 2011) targets phosphorylation and regu-
lation events involving phosphorylation, among
other things. Many of these event mentions are en-
countered in sections detailing experiments. Thus,
our task can be addressed in part through disam-
biguation and assimilation of these events—which
were actually observed in experiments? In this pa-
per, we describe an approach to datum extraction

that elaborates this idea.

Our focus on multi-slot, multi-sentence factual
frames is reminiscent of early formulations of the
information extraction problem used in the Mes-
sage Understanding Conference (MUC) (Grish-
man and Sundheim, 1996; Chinchor et al., 1993).
Over successive iterations of MUC, target frames
became quite elaborate, similar in complexity to
the datums we ultimately seek to populate. Many
of the tasks that the information extraction com-
munity views as canonical, including named entity
recognition, co-reference resolution, word sense
disambiguation, and relation and event extrac-
tion, were introduced as simplifications of the core
frame-filling task in MUC6. The field has since
largely neglected the discourse-wide frame-filling
challenge.

Of course, to take it up again and address it
with the latest machine learning techniques, we
require heuristics to align slot-level information
found in reference frames to expressions in train-
ing sentences. Using such heuristics, in combi-
nation with structured ground-truth data, such as
our collection of datums, is commonly referred
to as distant supervision, an approach pioneered
on a biomedical extraction problem (Craven and
Kumlien, 1999). Relatively little work has ap-
plied distant supervision to discourse-level extrac-
tion problems. A counter-example is Reschke et
al. (2014), which addresses event extraction at
the document level, attempting to populate event-
related Wikipedia “info boxes” with article source
text. The Reschke et al. approach employs
SEARN (Daume III et al., 2009), a technique that
reduces complex structured classification prob-
lems into simpler sequence learning problems,
finding that it yields performance superior to sev-
eral strong baselines.

Recently, the problem of understanding ac-
counts of experiments in the biological litera-
ture has been the focus of a small amount of
study (Dasigi et al., 2017; Burns et al., 2016). This
work, which springs from the same motivation and
shares some of the same data as our own, is largely
concerned with modeling the discourse structure
of experimental narratives. It is therefore largely
complementary to our work, which targets factual
experimental details. Success in discourse model-
ing promises to solve key problems that we face,
such as the segmentation of the text into distinct
experiments.
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Figure 1: An annotated Pathway Logic datum.

3 Problem

The Pathway Logic (PL) project pursues high-
fidelity signaling pathway models centering on the
Ras family of proteins (Eker et al., 2004). Part
of the effort involves a manual curation of ex-
perimental results, which has resulted in approx-
imately 50K records, each containing a detailed
formal representation of a reported experiment and
its outcomes. Such records, called datums, retain
pointers to the papers and figures from which they
were derived.

Figure 1 displays a typical datum in its compact
formal syntax, highlighting the four key compo-
nents: the assay, encoding the type of assay con-
ducted (here, an in-vitro kinase activity assay); the
subject, the entity whose response was measured
(“Jnk1”); the treatment, the substance applied to
the cellular environment (here, some member of
the IL-1 family, either IL-1 alpha or IL-1 beta);
and the change or experimental outcome. It should
be apparent from the figure that the typical da-
tum records many additional experimental details.
We refer to the combination of these four fields,
stripped of such qualifiers, as a simplified datum,
and seek to reconstruct these 4-tuples in our exper-
iments.

Notable among the fields in Figure 1, is an en-
coding of the source of the datum, most frequently
as a PubMed ID and figure reference. The datum
curator, not a computational linguist, found it most
natural to localize datums to the figures display-
ing assay outcomes. As a consequence, we do not
have access to a simple procedure for identifying
specific textual expressions for the various datum
elements. In fact, the data comes with no guaran-
tee that such expressions are present at all.

However, after a manual review of a large num-
ber of datums, we know that while some datums
are not adequately described in the text of anno-
tated articles, most are. Furthermore, the align-
ment of datums to figures enables weak localiza-
tion of datum elements to individual sentences, be-

cause figure captions and body sentences contain-
ing figure references are on average relatively rich
in information needed to populate the simplified
datums attached to corresponding figures.

1. Phosphorylation and activation of JAK1 and Stat6 are

essential for induction of Stat6 DNA binding activity. 2.

To ascertain whether the decrease in Stat6 DNA binding

activity in the SOCS-1 stable transfectants was due to in-

hibition of JAK1 kinase activity, we immunoprecipitated

lysates from cells untreated or treated with IL-4 with Abs

to JAK1 or Stat6 and probed with Ab to phospho-tyrosine.

3. Induction of JAK1 and Stat6 phosphorylation in the

SOCS-1 stable clones was reduced when compared with

control (Fig. 3A), while induction in the SOCS-2 stable

clones (Fig. 3B) and in the SOCS-3 stable clones (Fig.

3C) was similar to that of controls. 4. To further confirm

that SOCS-1 suppresses JAK1 activation, we measured

the IL-4-induced kinase activity of JAK1 in the SOCS-1

stable clones by in vitro kinase assay.

Table 1: Example sentences potentially express-
ing the key elements of a “phos” datum.

Table 1, which excerpts four contiguous sen-
tences (we have numbered them for convenience)
from a relevant article, renders this concrete, but
also illustrates some of the subtleties involved.
Our data notes two distinct phosphorylation assays
in this passage, both linked to Sentence 3 (the only
sentence with figure references), corresponding to
the subjects JAK1 and Stat6, respectively, each of
which are phosphorylated (i.e., the change of the
“phos” assay is “increased”) in response to IL-4
(the treatment).

This passage is abundant in evidence about the
relevant experiments, but the information is dis-
tributed. Sentences 1 and 3 both contain inflec-
tions of “phosphorylate,” providing evidence that
a “phos” assay was conducted, but both lack the
treatment IL-4, which is referenced in Sentences 2
and 4. Note that the “phosphorylate” sentences are
rich in entities, potentially posing a combinatoric
discrimination problem. Ultimately, if we wish to
extract the two target datums at Sentence 3, in-
formation about the experimental treatment must
be pulled in from one of the adjacent sentences,
and we must determine that exactly two datums
are warranted.1

1Actually, a number of experimental variants are under
discussion in this passage. These are captured the database
in supplementary records called “extras.” Extras are not the
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Whatever the textual evidence for datums in a
paper, our problem is essentially extraction at the
level of documents. Formally, we are given a set
of examples {〈di, yi〉}, in which di is a document
and yi is a set of tuples {〈sij , tij , aij , cij〉}, the el-
ements of each tuple representing subjects, treat-
ments, assay types, and observed changes, respec-
tively. Assay and change values are drawn from
closed classes, assays from the set of types rep-
resented in the Pathway Logic knowledge base,
and changes from the set {increased, decreased,
unchanged}. Subjects and treatments are drawn
from the effectively open class of chemicals used
for experiments in the literature. In practice, they
are usually proteins, and in our experiments these
two slots take Uniprot IDs. Our extraction task in-
volves inferring the correct set yi, given some di.

4 Approaches

We investigate two distinct approaches to this
problem, the frame classification approach and the
register machine approach. The first is applica-
ble only to subject-treatment pairs that co-occur in
individual sentences, while the second approach
can in principle associate subjects and treatments
found in different sentences.

4.1 Frame Classification

We observe that datum subjects and treatments
tend to be mentioned together in individual sen-
tences. This motivates a simple framing of the
datum extraction problem as binary classification.
Specifically, if we fix the assay type (e.g., “phos”)
and change (e.g., “increased”), we can view each
document as a set of co-mentioned proteins—
all pairs of proteins mentioned together in some
sentence—and attempt to distinguish pairs in the
subject-treatment relation from other pairs. Of
course, we must perform this procedure for all
assay-change pairs of interest.

We follow an approach to featurization pro-
posed in Xu et al (2016). Consider the set of
sentences containing protein entities P1 and P2.
Given a target assay-change configuration we train
two binary classification models, one to distin-
guish cases in which P1 and P2 are subject and
treatment, respectively, and one for the opposite
assignment. Our feature vectors have four parts,
each part containing features that require the fre-
quency of lexical unigrams and bigrams found in

focus of this paper’s work, but are ultimately important.

various sentence contexts. Thus, the word “pro-
tein” corresponds to three distinct features: one
feature recording its frequency of occurrence be-
fore P1 in the set of sentences, between P1 and
P2 (encountered in that order), between P2 and P1

(encountered in that order), and after P2, respec-
tively.

We also included and recorded a small perfor-
mance benefit from two non-lexical features. First,
observing that datum protein pairs tend to be more
frequent than others, we defined a feature that re-
flects the number of sentences in which a pair co-
occurs. Second, we defined indicator features that
reflect whether specific proteins fill a subject or
treatment role anywhere in the training data.

Admittedly, this approach suffers from certain
limitations, most obviously limited recall, as it
can only distinguish datums whose subject and
treatment co-occur in a sentence—e.g., discard-
ing some 40% of phosphorylation datums. And as
noted, because the classification problem is con-
ditioned on assay and change, we must learn a
separate classifier for each observed assay-change
combination. This is tractable in practice, because
the number of frequently observed assay-change
combinations occurring is manageable.

4.2 Register Machine
To accommodate the distribution of relevant in-
formation across the sentences in a discourse, we
imagine a model capable of traversing sentences,
accumulating information, and synthesizing da-
tums. We suppose that datums are produced by
a virtual machine with four registers (one for each
of the slots in a simplified datum) and two cursors
(to traverse the sentences in a caption and article
body, respectively). At each time step, the ma-
chine can execute an instruction to advance either
cursor, populate or delete the contents of registers,
or produce one or more datums. Specifically, we
define the following instructions:

• advanceSectionCursor, where Section can
be either Caption or Body. One of the cur-
sors is advanced to the next entity within the
current sentence, if present, or to the begin-
ning of the next sentence in body or among
figure captions.

• setClosedValue, where Closed can be either
Assay or Change, and Value is one of the le-
gal values for the indicated closed-class reg-
ister. The register becomes populated with
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the specified value, replacing any previous
contents.

• setOpenfromSection, where Open is either
Subject or Treatment. The indicated register
is populated with the entity under the cursor
for Section. This instruction is illegal if there
is no such entity.

• addOpenfromSection. This instruction is
like the previous one, except the entity is ac-
cumulated into the indicated register. As this
implies, open-class registers can hold multi-
ple entities.

• deleteRegister empties the indicated register.

• deleteAll empties all registers.

• produceDatums causes datums to be gener-
ated from register contents. A different da-
tum is generated for each distinct combina-
tion of entities in the subject and treatment
registers.

Let us suppose we are given a sequence of instruc-
tions I = i1 · · · im applying the machine to some
example 〈di, yi〉. It is easy to see than any such I
yields a set of datums y∗i , which we can formal-
ize as some function, F (d, I) = y.2 Further, we
can speak of a policy π(d) = I that nominates
instructions sequences, given a document. Ulti-
mately, our objective is to find the best policy:

argmin
π

∑
i

L(F (di, π(di)), yi) (1)

Here, L(y∗, y) is the loss experienced by some
machine-generated set of datums y∗ with respect
to the ground-truth y. In practice, we seek to op-
timize the F1 of extracted datums versus ground
truth under a strict equality standard, i.e., only
those datums that agree in all slots with some
ground-truth datum are counted as successes.

Of course, Equation 1 is difficult to satisfy di-
rectly. Instead, we seek to learn a local ranking
model for individual instructions. Let S(d, I1,k)
represent the state of the machine after executing
k instructions I1,k = i1 · · · ik against document d,
including the positions of the cursors, the state of
the registers, and any generated datums. We seek
to learn a local policy π̂(S(d, I1,k)) = ik+1 that
chooses the best next instruction.

2We posit that illegal instructions (e.g., advancing a cursor
at the end of the document) have no effect.

Learning π̂ is essentially a ranking problem:
given all legal instructions in the current state,
which is best to execute? We therefore adopt a
learning-to-rank approach, training an empirical
model to map machine states to real values, such
that the highest-scoring instruction is the best to
execute in the current state. To this end, we im-
plemented an oracular policy (henceforth the “or-
acle”) that nominates instructions based on full
knowledge of ground truth. Given our uncer-
tainty about which sentences express datum ele-
ments (the subject of one or more datums might be
mentioned dozens of time in an article), this policy
heuristically orients datum production around fig-
ure captions and sentences containing figure refer-
ences: datums are aligned to such sentences, using
their source field, and the machine is instructed to
load its registers and produce datums as close as
possible to the sentences identified in this way. For
example, if a datum having subject a and treatment
b is linked to sentence si, and b is mentioned in si,
but the nearest mention of a is in si−1, the oracle
instructs the machine to load its subject register at
the amention in si−1, and its treatment, assay, and
change registers at the b mention in si, followed
by a produceDatums instruction (and typically
some combination of delete instructions).

In our current implementation, we train a multi-
class perceptron model to perform ranking, up-
dating it whenever it ranks an inappropriate in-
struction highest. The mistake-driven nature of
this training regime enables us to accommodate
a subtlety of the problem: there are often several
good instructions in any given state, and we cannot
know that the instruction preferred by the oracle is
truly optimal. To respond to this reality, the oracle
provides a second service—assessment of instruc-
tions preferred by the model. If such an instruction
is deemed adequate—if it does not ultimately pre-
vent the register machine from producing upcom-
ing datums—the model’s preferred instruction is
deemed correct, and no update is performed.

Any feature of the machine’s state, including
the contents of its registers, datums produced so
far, recently executed instructions, and, most im-
portantly, the language at and around cursors, may
be encoded to train the model. Table 2 lists the fea-
tures implemented to date, which should be self-
explanatory, except for the “Pattern” features. To
implement these, we separately induce a set of pat-
terns over dependency parses to detect expressions
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Type Feature Description
Cursor atPosition(curs, pos) True if the cursor curs (body or caption) is at the

indicated pos in its section (beginning, internal,
end)

Register populated(reg) True if the indicated reg (subject, treatment, assay,
or change) is populated.

cregContains(reg, val) True if a closed-class register reg (assay or
change) contains a particular value val legal for
that type (e.g. the assay register contains “phos”).

oregContains(curs, reg) True if the open-class register reg contains the en-
tity under the cursor curs.

allPopulated True if all four registers are populated.
Lexical sentContains(curs, word) True if the sentence under curs contains word.

wordAtOffset(curs, offs, word) True if word is observed at offset offs, ranging
over [−2,+2], from curs.

Pattern activeAtSent(pat, curs) True if the detection pattern pat matches the sen-
tence under curs.

activeAtEnt(pat, curs) True if the pattern pat matches the entity under
curs.

Other producedDatums True immediately after a produceDatums instruc-
tion has been executed.

bias Always true.

Table 2: Features used in experiments with the register machine.

that tend to signal the presence of an assay sub-
ject or treatment (Freitag and Niekrasz, 2016). For
each such pattern, we define two features, which
are true if the corresponding pattern matches any-
where in a cursor sentence or at a cursor entity, re-
spectively. In addition to the features listed in the
table, we automatically generate a large number of
conjunctive features from feature pairs, returning
true when both the constituent features are true.

5 Evaluation

We constructed our experimental data from the set
of datums in the Pathway Logic database, along
with the 2,394 papers to which they refer. Be-
cause most of these papers are available only as
PDF,3 we converted them to plain text and heuris-
tically identified paper sections, converting each
to a sequence of sentences. This data was then
annotated by machine to identify mentions of pro-
tein entities (heuristically mapped to Uniprot iden-
tifies) and figure references. The latter were used
to align datums heuristically to sentences.

As noted previously, the Pathway Logic data

3Much of the curated data predates the establishment of
the NXML format.

All Phos
Database 17,444 4,864
Experimental corpus 6,554 3,152
Visible 5,981 2,989
Fully visible 2,336 1,418

Table 3: Visibility of datums (of any type vs.
those representing phosphorylation assays).

comes with no guarantee that the datums are actu-
ally described in the text of an article.4 Moreover,
failures in entity recognition or resolution further
reduce what our models have the potential to “see”
in the text. We therefore limit our attention to “vis-
ible” datums, those datums for which we recog-
nize either the subject or treatment entity some-
where in the paper to which a datum is aligned. We
call datums for which both entities are recognized
“fully visible.” Our experimental corpus consists
of the 518 papers aligned to at least one visible
datum.

4Nor is there a strong guarantee that all experiments de-
scribed in a paper have been converted into datums. Our cura-
tor has it in her charter to do so, but we have encountered ex-
periments for which no datum was created. We do not know
how common this is.
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Method Precision Recall F1
Oracle 0.6935 0.5708 0.5996
Frame Gold 0.9302 0.4937 0.6017
Frame 0.2426 0.296 0.2322
Machine 0.2056 0.1877 0.165

Table 4: Macro-averaged precision, recall, and F1
in extracting simplified “phos” datums.

Table 3 provides an overview of the data we
work with. For convenience in comparing our
two approaches, we focus on “phos” datums ex-
clusively, and therefore present separate totals for
“phos” datums in the table. (The register machine
targets all visible assay types, but we evaluate its
performance only against “phos” datums.) The
row labeled Database lists counts calculated from
our snapshot of the datum database, while Exper-
imental corpus considers only the subset aligned
to papers in our collection of 518 articles. The
rows Visible and Fully visible document the num-
ber of datums actually available for experiments.
The performance numbers that follow correspond
to those datums contained in the cell labeled Visi-
ble, Phos.

In our experiments, we randomly sampled 75%
of our 518 articles (and the corresponding da-
tums) for training, and evaluated against the re-
maining 25%. In training the register machine,
we reserve some of the training data for valida-
tion, using F1 against this hold-out data as a stop-
ping criterion to prevent overfitting. To be deemed
correct, an extracted simplified datum must agree
with a ground-truth datum on all four slots. When
a ground-truth datum is partially visible, an extrac-
tor must populate the empty slot with a null in or-
der to be awarded credit. Note that this necessarily
limits the recall of frame classification, which has
no way to produce a null slot.

Table 4 presents the results of our experiments.
The first two rows in the table establish approxi-
mate upper bounds on performance. Oracle mea-
sures the performance of the policy used to gen-
erate training data for the register machine, while
Frame Gold lists the performance of a perfect
classifier of candidate protein pairs nominated us-
ing the sentence co-occurrence heuristic. Interest-
ingly, the difference in recall between these two
approaches is fairly small, indicating that although
the register machine can in principle integrate ev-
idence distributed over multiple sentences, it is

difficult to do so, even for a heuristically imple-
mented oracle.

The remaining two rows compare the two learn-
ing approaches to datum extraction described in
the paper, frame classification (Frame) and the
register machine (Machine). Note that the exam-
ple generation procedure used in Frame leads to
considerable class skew, with the set of negative
example dwarfing the positive. In these experi-
ments, we randomly sampled the negative exam-
ples to achieve a ten-to-one negative-to-positive
ratio.

The results appear to suggest that the relative
simplicity of frame classification more than com-
pensates for the fact that it cannot account for a
significant fraction of datums, those whose sub-
jects and treatments are not found together in an
individual sentence. We see clear evidence that
accumulation of evidence spread across sentences
enhances performance. In a separate experiment,
in which we classified individual sentences (simi-
lar to canonical relation extraction), we saw a drop
in F1 of about 2 points.

The register machine, which in principle can
accommodate the “distributed” datums that the
frame classifier ignores, has difficulty learning in-
struction sequences well enough to achieve com-
parable performance. Its difficulty appears to cen-
ter primarily on the extracted components of da-
tums, the subjects and treatments. If we evalu-
ate the register machine’s performance on indi-
vidual slots (e.g., by scoring the set of phos sub-
jects extracted against the set found in phos da-
tums aligned to a paper), we observe F1s of 0.92
and 0.67 on assay and change, respectively, but
only 0.42 and 0.38 on subject and treatment. We
believe that the feature set currently employed by
the machine is too impoverished to perform these
extractions accurately. Note that while frame clas-
sification accumulates evidence relevant to a pro-
tein pair from across an article, the register ma-
chine relies on mostly local information. This is
an unnecessary limitation, which we are attempt-
ing to rectify.

6 Discussion

Our work with the frame classifier is leading the
way in this regard. In preliminary work conducted
after the experiments presented here, we have con-
tinued to mitigate keys drawbacks of the approach.
For example, by training individual protein classi-

21



fiers for “subjectness” and “treatmentness,” using
information distributed across an article, we ob-
serve a frame classification F1 of 0.30 in prelimi-
nary experiments. We are also working to increase
the number of assay-change combinations targeted
by frame classification to practical levels.

All this makes clear that the strict evaluation
metric used in this paper–simultaneous agreement
on four key slots with target datums–poses a stiff
challenge for computer readers. These perfor-
mance levels are understandable. Robust solutions
for many types of binary relation and event ex-
traction have yet to be reported. For example, a
characteristic approach to ACE-style relation ex-
traction reports peak F1 of about 0.55 (GuoDong
et al., 2005), and recent work in comparable
biomedical extraction problems yields qualita-
tively comparable performance–e.g., F1 of 0.53 in
a pathway curation task involving primarily binary
interactions having high domain overlap with the
current paper (Nédellec et al., 2013). As a rule,
adding slots to a target template leads to consider-
ably lowered extraction performance under a strict
matching regime. Moreover, the heuristic align-
ment of slot values to specific textual expressions
adds further noise to the training and evaluation
processes.

However, there is reason to believe that even
these modest performance numbers are useful
for certain applications. In separate work under
the DARPA Big Mechanism program, we imple-
mented a manual datum extractor, as part of a sys-
tem that sought to confirm events and relations
extracted by general-purpose bio-NLP readers by
looking for corroborative experiments in the same
paper. We were able to show, using hand-scored
results from the program evaluation, that 80% of
machine extractions corroborated in this way were
correct (about 17% of all such extractions), ver-
sus a baseline accuracy of 50%. This despite the
fact that we estimated the F1 of our the hand-
authored system, which over-generates wildly, at
less than 0.02. Thus, even a very noisy experiment
extractor has value as a source of corroboration
for assertions extracted without attention to prag-
matic context. Possibly key to this outcome was
the strict standard applied in the program evalua-
tion, which deprecated speculation or statements
of background knowledge.

Our focus on a very specific problem and data
set may leave the impression that these results are

of little further use. We argue that the opposite
is true, that this admittedly domain-specific chal-
lenge is an instance of a type of problem that will
become increasingly salient as machine reading
matures. Eventually, the field must move beyond
sentence-local, contextless, low-arity extraction to
the full population of knowledge frames summa-
rizing information relevant to important use cases.
A key resource to this end will be “found” struc-
tured resources loosely attached to textual source
material, such as the auxiliary data associated with
biological publications with increasing frequency,
or Wikipedia info-boxes summarizing events in
newswire (Reschke et al., 2014). The field re-
quires methods that exploit such resources for the
interpretation of key facts in text.

7 Conclusion

The problem introduced in this paper—that of ex-
tracting faithful representations of experiments de-
scribed in the biological literature—has two fea-
tures that distinguish it from much of the work
on biomedical NLP: (1) It is closely aligned to
the needs of computational biology, stemming
from research independent from and uninformed
by NLP. And (2) it cannot be adequately addressed
by models that target the information found in in-
dividual sentences in isolation. These two features
make for a problem of considerable depth and im-
portance, both for biology and NLP. While it is
clear that we have not solved this problem with the
approaches documented here, we have sketched
two potential solutions and illuminated some of
the specific challenges that remain.
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Abstract

The robust extraction of numeric values
from clinical narratives is a well known
problem in clinical data warehouses. In
this paper we describe a dynamic and
domain-independent approach to deliver
numerical described values from clinical
narratives. In contrast to alternative sys-
tems, we neither use manual defined rules
nor any kind of ontologies or nomencla-
tures. Instead we propose a topic-based
system, that tackles the information ex-
traction as a text classification problem.
Hence we use machine learning to iden-
tify the crucial context features of a topic-
specific numeric value by a given set of
example sentences, so that the manual ef-
fort reduces to the selection of appropri-
ate sample sentences. We describe con-
text features of a certain numeric value
by term frequency vectors which are gen-
erated by multiple document segmenta-
tion procedures. Due to this simultane-
ous segmentation approaches, there can be
more than one context vector for a numeric
value. In those cases, we choose the con-
text vector with the highest classification
confidence and suppress the rest.

To test our approach, we used a dataset
from a german hospital containing 12 743
narrative reports about laboratory results
of Leukemia patients. We used Support
Vector Machines (SVM) for classification
and achieved an average accuracy of 96%
on a manually labeled subset of 2073 doc-
uments, using 10-fold cross validation.
This is a significant improvement over an
alternative rule based system.

1 Introduction

Driven by the digitalization, also hospitals have
begun to process their documentation more and
more in a digital manner. The resulting databases
establish new opportunities for efficient analysis
of patient data. However, many parts of those data
are described by a free text, so that concrete in-
formation first has to be extracted from text before
they become available for further analysis. This
paper focuses on the extraction and correct seman-
tic interpretation of numeric values from clinical
narratives. Indeed, some numeric values like in
example E:G-Verhältnis=0,4:1 can extracted by
regular expression or template filling due to un-
ambiguous formattings or keywords. But there are
also numeric values, which are difficult to process
on that way. Reasons for the complexity are gen-
eral number descriptions, like e.g. percentage val-
ues, or a variety of keywords for the associated,
semantic information. In front of many different
medical areas with different informations and for-
mulations, we assume that machine learning can
be used to simplify and improve this task.

After an overview of related work in section 2,
we introduce a method to assign numeric values
of a given document to their semantic meanings in
section 3. In contrast to rule-based systems, we
use a system that is able to learn and identify de-
scriptive context features for certain numeric val-
ues by example sentences. We consider this task
as a supervised machine learning problem and ex-
amine the feasibility to replace rule based systems
by a more flexible machine learning approach. In
section 5 we compare a rule based system with our
approach and substantiate our recommendation to
use machine learning procedures for information
extraction processes.
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2 Related Work

There are various research activities in the field of
clinical text mining which can be divided into re-
search in the field of Information Retrieval and re-
search in the field of Information Extraction. We
position our work in the field of Information Ex-
traction. In general, Information Extraction in
context of medical text mining often addresses one
of the following tasks:

• Named Entity Recognition (Ruch et al.,
2003)

• Negation Detection (Elkin et al., 2005)

• Temporal Information (Hripcsak et al., 2005)

• Extraction of Codes (ICD,OPS) (Baud, 2003)

We noticed that most of the related studies use reg-
ular expressions and some kind of terminology,
dictionary or ontology. Especially, a robust map-
ping (Sager et al., 1994) between clinical narra-
tives and UMLS (Lindberg, 1990), SnomedCT or
a self-defined coding scheme appear to be the fre-
quent goals of research in this field. Using an-
notation engines like GATE or UIMA text parts
are connected to the corresponding concept of the
given knowledge organization system (Liu et al.,
2005).

In addition, some authors define or describe
a complete natural language processing tool for
clinical narratives, that integrates typical text min-
ing operations like tokenization, POS-Tagging to
enhance the process of information extraction. Be-
sides MedLEE (Friedman et al., 1995), Apache
cTakes (Savova et al., 2010) is such a software
solution that combines the concepts, mentioned
above.

It should be noticed, that many knowledge or-
ganization systems, like e.g. SnomedCT, are not
directly available for german. Thus Becker and
Böckmann (2016) describe an approach to extract
UMLS concepts from german clinical notes using
the german version of UMLS and find the cor-
responding SnomedCT concept by the previously
detected UMLS concept.

Summarizing, we observe that mapping of doc-
uments to knowledge organization systems like
UMLS or SnomedCT, supported by classical text
mining operations, seems to be the most common
approach for information extraction from clinical
narratives. One often mentioned argument against

the use of machine learning is the high effort to
generate suitable training sets.

3 Method

Instead of executing a traditional Natural Lan-
guage Processing (NLP) pipeline and process each
word, e.g. by associating it with an UMLS concept,
we are only interested on numeric values specified
in text documents. Hence, we introduce a method
to determine the meaning of a numeric value by
the surrounding words using machine learning al-
gorithms. This approach represents an alternative
to the explicit definition of information extraction
rules or ontology based document processing.

As illustrated in figure 1, our information ex-
traction method consists of five steps:

1. Extraction of numeric values

2. Document segmentation by . and ;

3. Generation of description candidates for each
numeric value

4. Classification of candidates

5. In case of multiple positive classified candi-
dates: Suppression of all candidates, except
the one with highest score.

Furthermore we use topic-based classifiers. Each
topic, like i.e. Blasts have to be described by posi-
tive an negative example sentences. Based on this
sentence sets the topic classifier determines, if a
given documents belongs to that topic or not. The
mentioned processing steps are explained in detail
below. The performance of this approach can be
found in section 5. Further details about our im-
plementation are described in section 4.

3.1 Initial Extraction of numeric values
Because we aim to extract numeric values from
clinical narratives, we are only interested in doc-
uments of the corpus C that contain at least one
numerical value. Therefore we use regular expres-
sions to detect and extract numerical intervals or
single values from every document. The result of
this initial filtering is a subset Cnum ⊆ C. After
this initial processing step each document di ∈ D
is defined as

di := (t,Ni) (1)

where t ∈ Cnum represents the original text and
Ni the set of numerical values that appears in that
document.
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Figure 1: (1) Extraction of numeric values from document d (2) segmentation of sentences and phrases
of d (3) for each n (gray area): sentence and phrases that contain n are candidates (4) topic related
candidates are matches (5) Choose the match with the highest confidence

3.2 Document Segmentation
In simple clinical information systems, an unstruc-
tured text is often represented by a string. How-
ever, for advanced information extraction strings
do not fit very well. Thus, the transformation of
a string in a more complex data structure is the
initial processing step of many text mining appli-
cations. There are several concepts to represent a
document by such a complex data structure. Be-
side graph-based approaches (Jiang et al. (2010)),
a document can also be described by bag of words
or a collection of sentences.

As illustrated in Figure 2, we believe, that a nu-
meric value is more related to certain segments
like sentences or phrases and less to the whole
document. Furthermore we assume, that different

Figure 2:

generated text segments could be different expres-
sive descriptions of the contained numeric value.
Due to this assumptions we describe a text di both
as a set of sentences Ds

i and as a set of phrases
Dp

i . The elements of Ds
i are produced by a com-

mon sentence tokenizer which splits the document
into n sentences based on the dot-sign(.) without
destroying point numbers or abbreviations. The
elements of Dp

i are the result of the same proce-
dure, which separates a document by semicolon
instead of a dot-sign. It should be noted, that in our
context the term phrase means a document snippet
that results from the semicolon based splitting of
the document. There are two motivations for this
additional segmentation: First, many clinical nar-
ratives are more written like a note and less like
a formal, well structured document. Therefore, it

can happen, that a document transports several in-
formations which are separated by semicolons, but
do not contain any dot-signs. In those short docu-
ments, a pure dot-sign based segmentation would
fail and the whole document would be considered
as the related context of a certain numeric value.
Second, it is possible, that an author describes a
documented quantity by a dedicated sentence, but
also by the beginning of the following sentence.
This related part of the following sentence is usu-
ally separated by a semicolon from the rest of the
sentence. An example of such a situation can be
seen in figure 3.

Figure 3: Underlined: Result from pure dot-sign-
based segmentation; Bold: Relevant text snippet
which is delivered by semicolon based segmenta-
tion.

So finally, we have extended our definition of a
document 1 to:

di := (Ds
i , D

p
i , Ni) (2)

for all di ∈ D. It is possible to extend this con-
cept by a comma based document splitting. But
we omitted it due to many for our use case useless
segments.

3.3 Candidate Generation

After the generation of overlapping document seg-
ments, we are only interested on segments, which
are related to a numeric value nj of di. Due to
the use of multiple segmentation procedures, there
can be more than one snippet which is directly re-
lated to nj . We call such segments candidates.
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In our current version, a related text segment of a
numerical value nj of document di can only be a
sentence or phrase from the same document that
contains this value, so that the candidate set of
each nj ∈ Ni is defined as:

cand(nj) := {c|((c ∈ Ds
i )∨(c ∈ Dp

i ))∧(nj ∈ c)}
(3)

In our implementation we keep track of relations
between numerical values, sentences and phrases
of di, so that we are able to retrieve the correct can-
didates even if the same numerical value appears
multiple times in di.

3.4 Topic Learning
Usually, quantities and their numerical values ap-
pear in the same sentence or text region. It is how-
ever extremely hard to define the exact construc-
tion in which the quantity and the value appear.
Consider e.g. the following sentence:

(1) Immer wieder Blasten, anteilsmäßig ca. 10%
Again and again blasts, rate approx. 10 %

The quantity Blastenanteil (Blast rate) is ex-
pressed in two words. The second (Anteil) is
only present as the root of a derived adjective (an-
teilsmäßig). Patterns like this are hard to capture
in rules. However, when the key concept blasts
and a numerical value appear in the same region
of the text, we can almost be sure, that the number
is the value for the blast rate. To recognize such a
key concept or topic, our system learns the related
words by a set of sample sentences.

Our system does not have any kind of knowl-
edge from a connected ontology or terminology
base like UMLS. Also text mining operations like
Named Entity Recognition or Negation detection
are not part of our processing pipeline.

Instead our system is based on a generic con-
cept of topic definition only. In our context a topic
associated with a quantity is defined as a pair of
sets containing positive and negative example sen-
tences for numeric values of that quantity. Ta-
ble 1 illustrates this idea for the amount of blasts,
which is mentioned in many documents of our test
dataset. Based on this two sets, we train a binary
topic-classifier, which determines whether a given
text segment belongs to that topic or not.

detectt(c) =
{

0 if c is not about topic
(1, κ) if c is about topic

(4)

Where κmeans the confidence or score of the clas-
sification.

As already explained above, c can be a sentence
or a phrase, that results from the segmentation de-
scribed section 3.2

We implemented 4 by Support Vector Machines
Boser et al. (1992). The features of all candidates
are term frequencies of a vocabulary V , so that
each candidate c is described by vector v ∈ Z|V |

at this point. In our experiments, V contains all
words from all available clinical narratives.

We assume, that c is related to topic t, if c con-
tains a numeric value and detectt(c) = 1. The
definition of κ depends on the used machine learn-
ing algorithm. In our experiments, κ represents
the distance to the hyperplane of the SVM based
classifier.

3.5 Non Maxima Suppression

The trained classifier tells, whether a document
segment c belongs to a certain topic t. We assume,
that the numeric value mentioned in c describes
the topic-related quantity, if c belongs to t. How-
ever, the classifier could find more than one candi-
date relevant for the given numeric value. In such
cases we select the segment with the highest con-
fidence value and assume that the value mentioned
in that segment belongs to the topic. Furthermore
it is possible to identify a threshold of minimum
confidence to accept a candidate as an identifica-
tion of a relation between a numeric value nj and
a topic t.

4 System Description

We implemented this method as a software sys-
tem, which is based on Python and SQL databases.
Our system should supports simple integration
into a clinical data warehouse, because many clin-
ical narratives originate from such an information
system. Furthermore, adjacent data collections
could be used as features of clinical narratives or
vice versa in the next version of our software.

4.1 Document representation

Before the execution of any text mining or ma-
chine learning procedure, our tool first generates
a database schema like shown in Figure 4. Our
in section 3.2 described segmentation concept will
realized by two tables, that represent Ds

i and Dp
i .

This tables are filled by scripts that implement the
in section 3.2 described segmentations. Further-

27



Positive sample sentences Negative sample sentences
Weiterhin Monozytoide Blasten (80%)
bei 300 Zellen

Ca. 80-85% kleine reife Lymphozyten,
einzelne mit Granula

Es findet sich eine Verdrängung der
normalen Hämatopoese durch eine
monomorphe Blastenpopulation, die ca.
80% beträgt.

Granulopoese stark linksverschoben bis
zu den Promyelozyten, die ca. 35% der
myeloischen Zellen ausmachen

Blastenanteil 2-4% Ausreifende granulopoese mit leichter
vermehrung von eosinophilen und deut-
licher vermehrung von plasmazellen mit
einem anteil von 5-10%, z. t. vakuolisiert;
kein signifikanter blastenanteil

Table 1: Definition of topic "Blasts" for the quantity blast rate by positive and negative example sen-
tences; Term-related terms are underlined. The underlining is given only for illustration here and not
part of the training data.

Figure 4: Documents are connected indirectly
with numerical values by text segments. Each seg-
ment type is represented by a corresponding table.
Currently supported segment types: Sentences and
Phrases as presented in section 3.2

more we store all numerical values in a dedicated
table, which is filled by the procedure, we de-
scribed in section 3.1. Figure 4 also illustrates,
that numerical values are directly connected with
sentences and phrases, but only indirectly with the
documents. We chose this structure to avoid an in-
correct behavior for documents, in which exactly
the same numerical values appear in multiple sen-
tences.

4.2 Topic Definition Format

We realized our in section 3.4 presented topic con-
cept by a json based data format. Figure 5 shows
an example of this technical topic description. The
example sentences can be defined via an easy to
use graphical user interface, that generates the ap-
propriate json code internally. So the topics can di-
rectly defined by doctors, that do not need knowl-
edge about technical data description techniques

Figure 5: Example of our json based topic defini-
tion format.

for this task.
A further motivation to define such a data for-

mat was the resulting flexibility, that enables the
possibility to share well defined topic definitions
with other internal or external organizations.

5 Evaluation & Results

We used a collection of 12 743 clinical narratives
from a german hospital to evaluate our informa-
tion extraction system. The narratives consist of
1 to 29 sentences, 5 sentences on average. The
collection comes from electronic health records of
leukemia patients. One of the main interests of the
physicians is the rate of blast cells in all reports
related to one patient.

At first we defined a topic by collecting posi-
tive sentences that contain a percentage descrip-
tion about blast cells and negative sentences that
are not related to the searched topic. Example sen-
tences for an description of the amount of blasts
are:
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(2) a. Blasten (80%)
Blasts (80%)

b. Blastenanteil 2-4%
Blast percentage 2-4%

c. Die Granulopoese ist linksverschoben
mit einem Blastenanteil von > 20%
der nicht erythropoetischen Zellen
The bone marrow is left-shifted
with a blast proportion of > 20%
of the non erythropoietic cells.

d. Keine Markfremden Zellen,
Blastenanteil sicher unter 5%.
No marrow foreign cells,
blast percentage for sure below 5%

Then we generated a vocabulary V containing
13 400 words, based on the whole collection.
A first statistic analysis shows, that the size of
|Cnum| is 9 655 and only 4 162 of that documents
contain known keywords about blasts and a per-
centage sign.

5.1 Construction of a gold standard
For the gold standard we selected a random sub-
set of 2 073 documents, which proportion of doc-
uments is fulfilling the three conditions is the same
as in the whole collection. About 75% of the doc-
uments in this selection do not contain a numer-
ical value, or a percentage sign or a keyword re-
lated to blasts. We annotated these documents
manually. Note that thus we make no difference
between documents that have no information on
blast rate and documents that do contain informa-
tion on blast rate, but do not give a concrete value.
Especially this means that we labeled all docu-
ments containing the statement Keine Blasten (no
blasts) as documents that do not give a value for
the quantity blast rate. For the remaining 435 doc-
uments, that contain keywords about blasts, a per-
centage sign and a numerical value, we extracted
the blast percentage manually.

Our classifier is trained only on sentences con-
taining numerical values. In our subset there are
6 805 sentences; 604 sentences contain a numeri-
cal value, 439 thereof being a blast rate, 165 not
related to the amount of blasts.

5.2 Experiment setup
Each text was first split into sentences and phrases
as described in section 3.2.

Next, we generated a candidate set for each nu-
merical value that appears in the given document.
As described in section 3.3, the term candidate
means a sentence or a phrase that contains the nu-
meric value. We processed all documents on that
way.

Then we conducted two experiments: In the first
experiment we examined the classification of sin-
gle sentences. Beside two baselines that are de-
scribed in the next section, we used a SVM based
topic classifier (see section 3.4), which decides for
each of the sentences, whether it is relevant for
the quantity blast rate. Now we can evaluate how
many sentences are classified correctly.

In the second experiment we compared methods
for extracting numerical values from whole doc-
uments. We evaluated our approach in two con-
figurations: SVM (Sentences) represents a variant
where all elements of the candidate sets are sen-
tences and SVM (Sentences & Phrases) represents
the same approach using multiple text segments.

For both experiments, we consider a text as cor-
rectly processed when either (1) the correct blast
rate is extracted from the text or (2) it is correctly
detected that no blast rate is specified.

Our manual labeling has extracted values for
each text and each sentence, obtained by splitting
texts on full stops. When we make additional seg-
ments by splitting on semicolons, we can apply
the classifier (trained on whole sentences) to this
segments as well. However, we cannot compare
the results with the manually labeled ones. On the
document level, however, we can compare with
the manually labeled documents.

We used ten-fold cross validation for all experi-
ments.

5.3 Baselines

We used three baselines. Since most documents
are not relevant for the quantity blast rate, we can
classify most documents correctly with the major-
ity classifier, that assumes that all documents are
irrelevant.

The second baseline assumes that every per-
centage value is a blast rate. On the sentence
level this baseline thus treats all sentences with
a number and percentage sign as relevant for the
blast rate and all others as irrelevant. At the docu-
ment level this baseline assumes the first percent-
age mentioned to be the blast rate. We will refer
to this baseline as the %-based approach.
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As a third baseline we used an extraction
method that is purely based on complex regular
expressions. Motivated by the remarkable per-
formance of the percent-based approach, a group
of students developed a regular expressions based
approach. Therefore they analyzed the data set
and define some keywords manually. Combined
with the detection of percentage values, they im-
plemented a procedure to extract the searched in-
formations by pattern recognition. Note that this
approach processes only whole documents, which
is why we could not compare this baseline with
alternative approaches on sentence level described
by table 2.

6 Results

Table 2 shows the result of the evaluation at sen-
tence level We clearly observe, that the classifier
treats almost all sentences correctly. With respect
to precision and recall it is of course easy to beat
the majority baseline, but the SVM also has an
higher accuracy.

Given the good results of the %-based approach
we can conclude that indeed most numerical val-
ues are related to blast rates. However, there are a
number of other numerical values. Apparently, the
SVM effectively distinguishes the blast rates from
other numerical values.

Table 3 shows the results of the complete
method on the document level. At the docu-
ment level we see again very high scores. We
could observe, that the additional semicolon based
segmentation indeed excludes a number of mis-
takes. (e.g. the third negative example from Ta-
ble 2) The lower precision in comparison to the
pure sentence-based configuration implies, that
the semicolon based approach produces a few seg-
ments which are hard to classify by the current
version of our topic classifier. But SVM(Sentences
& Phrases) also extracts significant more numeric
values than SVM(Sentences). As documented in
table 3, the regular expression based integration
of keywords improves the performance of the %-
based information extraction strategy. Apparently,
the rules a very precise and do almost never con-
sider a percentage as a blast rate if that is not the
case. Thus this method has the highest precision
of all tested methods. However, the recall is much
lower than that of the classifier based approach.

7 Conclusions and Future Work

In this paper we presented a first version of our in-
formation extraction system for medical documen-
tations, which identifies the meaning of a numeric
value by the surrounding words.

The integral difference to many similar applica-
tions is, that we had no explicit described knowl-
edge about the content of out dataset. Instead
we used machine learning to learn important key-
words by sample sentences.

With term frequency vectors, we used a very
simple kind of feature, which already works very
well. In the future we want to examine, which al-
ternative features could improve our system.

Our approach yields remarkable results. How-
ever, there are situations, that can not processed
correctly by our system. We expect, that numeri-
cal values are always described by numbers. How-
ever, it is possible, that numbers are described by
a words instead of number (i.e ’five’ instead 5).
We also observed, that especially the number zero
is often replaced by a negation (i.e. ’no blasts’ in-
stead of ’0% blasts’). Hence we will integrate a
preprocessing step that converts textual definitions
of numbers in real numbers. It should be noted,
that this task is a non-trivial task, because also
a quantitative value can correspond with several,
very different formulation, which can be consid-
ered as an classification problem, very similar to
our topic detection problem, described in section
4. Furthermore, words like ’significant’ compli-
cate or prevent a mapping to an equivalent numer-
ical description of the information.

In general, we believe that machine learning
could be much more efficient than rule-based con-
cepts. Every rule engine needs someone who de-
fines suitable rules, whereas our approach only
needs sample sentences which are always avail-
able. Furthermore table 3 shows, that the ma-
chine learning approach is more adjustable than
the more strict rule-based approach.
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Method Recall Precision Accuracy
SVM 0.987 (0.005) 0.950 (0.003) 0.996 (0)
Majority 0.0 (0) 0.0 (0) 0.935 (0)
%-based 0.893 (0) 0.727 (0) 0.971 (0)

Table 2: Results of the extraction of the percentage of blasts evaluated on sentence level. Results are
averages of 10-fold cross-validation. Standard deviations are given in parentheses.

Method Recall Precision Accuracy
SVM (Sentences & Phrases) 0.921 (0.049) 0.911 (0.044) 0.965 (0.017)
SVM (Sentences) 0.834 (0.069) 0.953 (0.037) 0.957 (0.017)
RegExp based 0.517 (0.053) 0.983 (0.021) 0.897 (0.019)
%-based 0.461 (0.082) 0.629 (0.081) 0.897 (0.023)
Majority 0.0 (0) 0.0 (0) 0.79 (0.034)

Table 3: Results of the extraction of the percentage of blasts evaluated on document level. Results are
averages of 10-fold cross-validation. Standard deviations are given in parentheses.
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Abstract

We assume that unknown words with in-
ternal structure (affixed words or com-
pounds) can provide speakers with linguis-
tic cues as for their meaning, and thus help
their decoding and understanding. To ver-
ify this hypothesis, we propose to work
with a set of French medical words. These
words are annotated by five annotators.
Then, two kinds of analysis are performed:
analysis of the evolution of understandable
and non-understandable words (globally
and according to some suffixes) and anal-
ysis of clusters created with unsupervised
algorithms on basis of linguistic and extra-
linguistic features of the studied words.
Our results suggest that, according to lin-
guistic sensitivity of annotators, technical
words can be decoded and become under-
standable. As for the clusters, some of
them distinguish between understandable
and non-understandable words. Resources
built in this work will be made freely avail-
able for the research purposes.

1 Introduction

Often, people face unknown words, be they neol-
ogisms (like in Some of the best effects in my gar-
den have been the result of serendipity.) or techni-
cal words from specialized areas (like in Jacques
Chirac’s historic corruption trial, due to start on
Monday is on the verge of collapse, after doc-
tors diagnosed him with ”anosognosia”). In both
cases, their semantics may be opaque and their un-
derstanding not obvious.

Several linguistic operations are available for
enriching the lexicon, such as affixation, com-
pounding and borrowings (Guilbert, 1971). We
are particularly interested in words with internal

structure, like anosognosia, because we assume
that linguistic regularities (components, affixes,
and rules that form their structure) can help speak-
ers in deducing their structure and semantics. Our
hypothesis is that if regularities can be observed
at the level of linguistic features, they can also be
deduced and managed by speakers. Indeed, lin-
guistic understanding is related to factors like:

• knowledge and recognition of components of
complex words: how to segment words, like
anosognosia, in components;

• morphological patterns and relations between
components: how to organize the compo-
nents and to construct the word semantics (Ia-
cobini, 2003; Amiot and Dal, 2008).

To verify our hypothesis, we propose to work
with a set of French medical words. These words
are considered out of context for several reasons:

1. when new words appear, they have little and
poor contexts, which cannot usually help
their understanding;

2. similarly, in specialized areas, the contexts,
except some definitional contexts, often bring
little help for the understanding of terms;

3. working with words out of context permits to
process a bigger set of words and to make ob-
servations with larger linguistic material;

4. from another point of view, analysis of words
in context corresponds to their perception in
extension relying on external clues, while
analysis of words out of context corresponds
to their perception in intension relying on
clues and features internal to these words.

For these reasons, we assume that internal struc-
ture of unknown words can help their understand-
ing. According to our hypothesis, affixed words
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and compounds, which are given internal struc-
ture, can provide the required linguistic clues.
Hence, the speakers may linguistically analyze un-
known words thanks to the exploitation of their
structure that they are able to detect.

Our interest for medical words is motivated by
an increasing presence of medical notions in our
daily life, while medicine still keeps a lot of mys-
teries unknown to lay persons because medical
knowledge is typically encoded with technical and
very specialized terms.

In what follows, we present some existing
works (section 2), the data which we propose to
process (section 3), and the experiments we pro-
pose to exploit (sections 4 to 6). We conclude with
some orientations for future work (section 7).

2 Existing work

We concentrate on work related to text difficulty
and understanding. Work on processing of words
unknown in dictionaries by automatic applica-
tions, although well studied, is not presented.

NLP provides a great variety of work and ap-
proaches dedicated to understanding and readabil-
ity of words and texts. The goal of readabil-
ity is to define whether texts are accessible for
readers or not. Readability measures are typi-
cally used for evaluation of document complex-
ity. Classical readability measures exploit infor-
mation on number of characters and syllables of
words (Flesch, 1948; Gunning, 1973), while com-
putational measures can involve vectorial models
and different features, among which combination
of classical measures with terminologies (Kokki-
nakis and Toporowska Gronostaj, 2006); n-grams
of characters (Poprat et al., 2006); stylistic (Grabar
et al., 2007) or discursive (Goeuriot et al., 2007)
features; lexicon (Miller et al., 2007); morpho-
logical information (Chmielik and Grabar, 2011);
and combination of various features (Wang, 2006;
Zeng-Treiler et al., 2007; Leroy et al., 2008;
François and Fairon, 2013; Gala et al., 2013).

In linguistics and psycholinguistics, the ques-
tion on understanding of lexicon may focus on:

• Knowledge of components of complex words
and their decomposition. The purpose is to
study how complex words (affixed or com-
pounds) are processed and recorded. Several
factors may facilitate reading and production
of complex words: when these compounds
contain hyphens (Bertram et al., 2011) or

spaces (Frisson et al., 2008); when they are
presented with other morphologically related
words (Lüttmann et al., 2011); and when
primes (Bozic et al., 2007; Beyersmann et al.,
2012), pictures (Dohmes et al., 2004; Koester
and Schiller, 2011) or favorable contexts
(Cain et al., 2009) are used;

• Order of components and variety of mor-
phological patterns. Position of components
(head or modifier) proved to be important
for processing of complex words (Libben
et al., 2003; Holle et al., 2010; Feldman and
Soltano, 1999). The notions of semantic
transparency and of morphological headed-
ness have been isolated (Jarema et al., 1999;
Libben et al., 2003);

• Word length and types of affixes (Meinzer
et al., 2009);

• Frequency of bases and components (Feld-
man et al., 2004).

Our hypothesis on emerging of linguistic rules in-
volved in word formation has also been addressed
in psycholinguistics, and it has to face two other
hypothesis on acquisition in context and on pro-
viding explicit information on semantics of com-
ponents (Baumann et al., 2003; Kuo and Ander-
son, 2006; McCutchen et al., 2014). Currently, the
importance of morphological structure for word
processing seems to be accepted by psycholin-
guists (Bowers and Kirby, 2010), which supports
our hypothesis. Yet, in our work, for verifying this
hypothesis, we exploit NLP methods and NLP-
generated features. Hence, we can work with large
linguistic data and exploit quantitative and unsu-
pervised methods.

3 Exploited data

The data processed are obtained from medical ter-
minology Snomed International (Côté, 1996) in
French, which purpose is to describe the medi-
cal area. This terminology contains 151,104 terms
structured in eleven semantic axes (e.g. disorders
and abnormalities, medical procedures, chemicals,
leaving organisms, anatomy). We keep terms from
five axes (disorders, abnormalities, medical pro-
cedures, functions and anatomy), which we con-
sider to be central and frequent. Hence, we do not
wish to concentrate on very specialized terms and

33



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000

P
o

u
rc

en
ta

g
e 

d
e 

m
o

ts
 d

an
s 

ch
aq

u
e 

ca
te

g
o

ri
e

Nombre de mots

+
−
?

(a) A1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000

P
o

u
rc

en
ta

g
e 

d
e 

m
o

ts
 d

an
s 

ch
aq

u
e 

ca
te

g
o

ri
e

Nombre de mots

+
−
?

(b) A2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000

P
o

u
rc

en
ta

g
e 

d
e 

m
o

ts
 d

an
s 

ch
aq

u
e 

ca
te

g
o

ri
e

Nombre de mots

+
−
?

(c) A3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000

P
o

u
rc

en
ta

g
e 

d
e 

m
o

ts
 d

an
s 

ch
aq

u
e 

ca
te

g
o

ri
e

Nombre de mots

+
−
?

(d) A4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000

P
o

u
rc

en
ta

g
e 

d
e 

m
o

ts
 d

an
s 

ch
aq

u
e 

ca
te

g
o

ri
e

Nombre de mots

+
−
?

(e) A5

Figure 1: Global evolution of percentage of words per caterogy.

words, like chemicals or leaving organisms. Nev-
ertheless, such words can be part of terms stud-
ied here. The selected terms (104,649) are seg-
mented in words to obtain 29,641 unique words,
which are our working material. This set contains
compounds (abdominoplastie (abdominoplasty),
dermabrasion (dermabrasion)), constructed (car-
diaque (cardiac), lipoı̈de (lipoid)) and simple
(fragment) words, as well as abbreviations (AD-
Pase, ECoG, Fya) and borrowings (stripping,
Conidiobolus, stent, blind).

These terms are annotated by five French na-
tive speakers, aged from 25 to 60, without med-
ical training and with different social and profes-
sional status. Each annotator received a set with
randomly ordered 29,641 words. According to
the guidelines, the annotators should not use ad-
ditional information (dictionaries, encyclopedia,
etc.), should not change annotations done previ-
ously, should manage their time and efforts, and
assign each word in one of the three categories:
(1) I can understand, containing known words;
(2) I am not sure, containing hesitations; (3) I
cannot understand, containing unknown words.
We assume that our annotators represent moder-
ate readability level (Schonlau et al., 2011), i.e.
the annotators have a general language proficiency
but no specific knowledge in medical domain, and
that we will be able to generalize our observations
on the same population. Besides, we assume that

these annotations will allow to observe the pro-
gression in the understanding of technical words.

Manual annotation required from 3 weeks up
to 3 months. The inter-annotator agreement
(Cohen, 1960) is over 0.730. Manual annota-
tion allows to distinguish several types of words
which are difficult to understand: (1) abbrevia-
tions (e.g. , OG, VG, PAPS, j, bat, cp); (2) proper
names (e.g. , Gougerot, Sjögren, Bentall, Glas-
gow, Babinski, Barthel, Cockcroft), which are of-
ten part of terms meaning disorders and proce-
dures; (3) medications; (4) several medical terms
meaning disorders, exams and procedures. These
are mainly compounds (e.g. antihémophile (anti
haemophilus), sclérodermie (sclerodermia), hy-
drolase (hydrolasis), tympanectomie (tympanecto-
mia), synesthésie (synesthesia)); (5) borrowings;
(6) words related to human anatomy (e.g. cloa-
cal (cloacal), nasopharyngé (nasopharyngal), mi-
tral (mitral), diaphragmatique (diaphragmatic),
inguinal (inguinal), érythème (erythema), maxillo-
facial (maxillo-facial), mésentérique (mesenteric),
mésentère (mesentry)).

4 Experiments

We propose two experiments:

1. Study of understanding progression of words
globally and according to some components
(section 5);
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2. Unsupervised classification of words, anal-
ysis of clusters and their comparison with
manual annotations (section 6).

5 Progression in word understanding

Progression of word understanding corresponds to
the rate of understandable and non-understandable
words at a given moment t for a given annotator.
This permits to observe whether the annotators can
become familiar with some components or mor-
phological rules, and improve their understanding
of words while the annotation is going on. This
analysis is done on the whole set of words and on
words with some components.

Figure 1 indicates the evolution of the three cat-
egories of words. The line corresponding to I can-
not understand is in the upper part of the graphs,
while the line I can understand is in the lower part.
The category I am not sure is always at the bottom.
We can distinguish the following tendencies:

• Annotators A2, A1 and especially A5 show
the tendency to decrease the proportion of un-
known words. We assume that they are be-
coming more familiar with some components
and bases, and that they can better manage
medical lexicon;

• Annotators A1, and in a lesser way A2 and
A4, show the tendency to decrease the num-
ber of hesitation (category 2). Indeed, the
proportion of these words decreases, while
the proportion of words felt as known (cat-
egory 1) increases. Later, the number of
known words seems not to increase, except
for A5. Besides, this learning effect is es-
pecially observable with the top 2,000 words
and it mainly affects the transition of hesita-
tion words to known words;

• For annotators A3 and A4, after a small in-
crease of proportion of unknown words, this
proportion remains stable. We assume that
the annotation process of a large lexicon did
not allow to gain in understanding of compo-
nents of the processed technical words.

Figures 2 and 3 show the evolution of under-
standing of words ending with -ite (-itis) (mean-
ing inflammation) and -tomie (-tomy) (meaning re-
moval), respectively. We can see that A5 has dif-
ficulty to understand these words: the percent-
age of unknown words is increasing, while on

the whole set of words (figure 1(e)) this annota-
tor shows the opposite tendency, with the percent-
age of unknown words decreasing. Annotators A2
and A4 also have understanding difficulties with
these words. Figures of other annotators suggest
that they make progress in decoding and under-
standing of words in -ite and -tomie. They first
show an improvement in understanding of these
words, and later there is another small progres-
sion. On the basis of these observations, we can
see that, according to types of words, to their lin-
guistic features and to the sensitivity of annotators,
it it possible to make progressive improvement in
understanding of technical lexicon which a priori
is unknown by speakers. As already noticed, we
assume that linguistic regularities play an impor-
tant role in improving of the understanding of new
lexicon. We propose to observe now if such regu-
larities can also be detected by unsupervised clus-
tering algorithms.

6 Unsupervised classification of words

Unsupervised classification is performed with
several algorithms implemented in Weka: SOM
(Kohonen, 1989), Canopy (McCallum et al.,
2000), Cobweb (Fisher, 1987), EM (Dempster
et al., 1977), SimpleKMeans (Witten and Frank,
2005). Excepting SimpleKMeans and EM, it
is not necessary to indicate the expected number
of clusters. Each word is described with 23 lin-
guistic and extra-linguistic features, which can be
grouped in 8 classes (an excerpt is provided in Ta-
ble 1):

• POS-tags. POS-tags and lemmas are com-
puted by TreeTagger (Schmid, 1994) and
then checked by Flemm (Namer, 2000).
POS-tags are assigned to words within the
context of their terms. If a given word re-
ceives more than one tag, the most frequent is
kept as feature. Among the main tags we find
for instance nouns, adjectives, proper names,
verbs and abbreviations;

• Presence of words in reference lexica. We
exploit two French reference lexica: TLFi1

and lexique.org2. TLFi is a dictionary of the
French language covering XIX and XX cen-
turies, and contains almost 100,000 entries.

1http://www.atilf.fr/
2http://www.lexique.org/
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Figure 2: Evolution of percentage of words ending with -ite in each category.
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Figure 3: Evolution of percentage of words ending with -tomie in each category.

lemma POS l1 l2 fg ft nba nbs initial final nbc nbv

alarme N + + 73400000 6 1 2 ala,alar,alarm rme,arme,larme 3 3
hépatite N + + 15300000 9 3 3 hép,hépa,hépat ite,tite,atite 4 4
angiocholite N - + 74700 12 1 5 ang,angi,angio ite,lite,olite 6 6
desmodontose N + - 2050 12 1 4 des,desm,desmo ose,tose,ntose 7 5

Table 1: Excerpt with features: POS-tag, presence in reference lexica (TLFI l1 and lexique.org l2),
frequency in search engine fg and terminology ft, number of semantic axes nba, number of syllables
nbs, initial and final substrings (initial, final), number of consonants nbc, number of vowels nbv.
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lexique.org has been created for psycholin-
guistic experiments. It contains over 135,000
entries, including inflectional forms. It con-
tains almost 35,000 lemmas. We assume that
words that are part of these lexica may be eas-
ier to understand;

• Frequency of words through a non special-
ized search engine. For each word, we query
the Google search engine in order to know
its frequency attested on the web. We assume
that words with higher frequency may be eas-
ier to understand;

• Frequency of words in medical terminology.
For the same reason as above, we compute
the frequency of words in the medical termi-
nology Snomed International;

• Number and types of semantic categories as-
sociated to words. We also exploit the infor-
mation on semantic axes of Snomed Interna-
tional and assume that words which occur in
several axes are more central;

• Length of words in number of characters and
syllables. For each word, we compute the
number of its characters and syllables, be-
cause we think that longer words may be
more difficult to understand;

• Number of bases and affixes. Each lemma
is analyzed by the morphological analyzer
Dérif (Namer and Zweigenbaum, 2004),
adapted to the treatment of medical words.
It performs decomposition of lemmas into
bases and affixes, and provides semantic ex-
planation of the analyzed lexemes. We ex-
ploit morphological decomposition, which
permits to compute the number of affixes and
bases. Here again we focus on complexity of
the internal structure of words;

• Initial and final substrings. We compute the
initial and final substrings of different length,
from three to five characters. This allows
to isolate some components and possibly the
morphological head of words;

• Number and percentage of consonants, vow-
els and other characters. We compute the
number and the percentage of consonants,
vowels and other characters (i.e. hyphen,
apostrophe, comas).

We perform experiments with three featuresets:

• Ec: the whole set with 23 features,

• Er: set with features reduced to linguistic
properties of words, such as POS-tag, num-
ber of syllables, initial and final substrings,
which permits to take into account observa-
tions from psycholinguistics (Jarema et al.,
1999; Libben et al., 2003; Meinzer et al.,
2009),

• Ef : set with linguistic features and frequency
collected with the search engine, which per-
mits to consider other psycholinguistic obser-
vations (Feldman et al., 2004).

With SimpleKMeans and EM, we perform two
series of experiments, in which the number of
clusters is set to 1,000 and 2,000 (for almost
30,000 individuals to cluster). We expect to find
linguistic regularities of words in clusters, accord-
ing to the features exploited. More specifically, we
want to observe whether the content of clusters is
related to the understanding of words.

Features SOM Canopy Cobweb
Ec: Full set (23) 5 62 33853
Er: Reduced set (8) 4 28 12577
Ef : Er and frequency (9) 4 27 9861

Table 2: Generated clusters

In Table 2, we indicate the number of clusters
obtained with various sets of features: SOM gen-
erates very few clusters, which are big and het-
erogeneous. For instance, with Ef , clusters con-
tain up to 13,088, 4,840, 7,023 and 4,690 individ-
uals; Cobweb generates a lot of clusters among
which several singletons. For instance, with Ef ,
we obtain 9,374 clusters out of which 9,861 are
singletons; EM and SimpleKMeans generate the
required number of clusters, 1,000 and 2,000;
Canopy generates between 30 and 60 clusters,
according to the features used. We propose to
work with clusters obtained with Canopy because
it generates reasonnable number of clusters, which
number and contents are motivated by features.

With features from sets Er and Ef , cluster cre-
ation is mainly motivated by initial substrings (not
always equal to 3 to 5 first or final characters) and
in a lesser way by their POS-tags and frequen-
cies. For instance, we can obtain clusters with
words beginning by p or a, or clusters grouping
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phosphats or enzymes ending with -ase. In this
last case, clusters with chemicals become interest-
ing for our purpose, although globally the clusters
generated on basis of features from sets Er and
Ef show little interest. We propose to work with
clusters obtained with the Ec featureset.

With Canopy, the size of clusters varies be-
tween 1 and 2,823 individuals. Several clusters
are dedicated to two main annotation categories.
Hence, 30 clusters contain at least 80% of words
from the category 1 (I can understand), while 6
clusters contain at least 80% of words from the
category 3 (I cannot understand). Among the clus-
ters with understandable words, we can find clus-
ters with:

• numerals (mil (thousand), quinzième (fif-
teen)), verbs (allaite (breast-feed), étend
(expand)), and adverbs (massivement (mas-
sively), probablement (probably)) grouped
according to their POS-tags and sometimes
to their final substrings;

• grammatical words (du (of), aucun (any), les
(the)) grouped on basis of length and POS-
tags;

• common adjectives (rudimentaire (rudimen-
tary), prolongé (extended), perméable (per-
meable), hystérique (hysterical), inadéquat
(inadequate), traumatique (traumatic), mil-
itaire (military)) grouped according to their
POS-tags and frequency;

• participial adjectives (inapproprié (inappro-
priate), stratifié (stratified), relié (related),
modifié (modified), localisé (localised),
précisé (precise), quadruplé (quadrupled))
grouped according to their POS-tags,
frequencies and final substrings;

• specialized but frequent adjectives (ro-
tulien (patellar), spasmodique (spasmodic),
putréfié (putrefactive), redondant (redun-
dant), tremblant (trembling), vénal (venal),
synchrone (synchronous), sensoriel (sen-
sory)), also grouped according to their POS-
tags and frequencies;

• specialized frequent nouns (dentiste (dentist),
brosse (brush), altitude (altitude), glucose
(glucose), fourrure (fur), ankylose (ankylo-
sis), aversion (aversion), carcinome (carci-

noma)) grouped according to their POS-tags
and frequencies.

Among the clusters with non-understandable
words, we can find:

• chemicals (dihydroxyisovalérate,
héparosane-N-sulfate-glucuronate,
désoxythymidine-monophosphate,
diméthylallyltransférase) grouped according
to their POS-tags, types of characters they
contain and their frequency;

• borrowings (punctum, Saprolegnia, pig-
mentosum, framboesia, equuli, rubidium,
dissimilis, frutescens, léontiasis, materia,
mégarectum, diminutus, ghost, immitis, fol-
liclis, musculi) grouped according to their
POS-tags, final substrings and frequency;

• proper names grouped according to their
POS-tags.

Within clusters with over 80% of words from
the category 3 (I cannot understand), we do not
observe understanding progression of annotators.
Yet, we have several mixed clusters, that contain
words from the two main categories (1 (I can un-
derstand) and 3 (I cannot understand)), as well as
hesitations. These clusters contain for instance:

• chemicals and food (créatinine (creatinine),
antitussif (antitussive), céphalosporine
(cephalosporine), aubergine (eggplant),
carotte (carrot), antidépresseur (antidepres-
sant), dioxyde (dioxide)) grouped according
to their final substrings, semantic axes and
frequency;

• organism functions, disorders and medi-
cal procedures (paraparésie (paraparesis),
névralgie (neuralgia), extrasystole (extrasys-
tole), myéloblaste (myeloblast), syncope
(syncope), psychose (psychosis), spasticité
(spasticity)) grouped according to their fre-
quency, final substrings and POS-tags;

• more specialized adjectives related to
anatomy and disorders (périprostatique
(periprostatic), sous-tentoriel (tensor),
condylienne (condylar), fibrosante (fibrotic),
nécrosant (necrosis)) grouped according to
their POS-tags and frequency.
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Evolution of understanding is observable mainly
within this last set of clusters. For instance, a
typical example is the cluster containing medical
procedures ending in -tomie, which words become
less frequently assigned to the category 3 (I cannot
understand) and more frequently to the categories
2 (I am not sure) and 1 (I can understand).

The content of clusters and our observations
suggest that, given an appropriate set of features
and unsupervised algorithms, it is possible to cre-
ate clusters which reflect the readability and un-
derstandability of lexicon by lay persons. Besides,
within some clusters, it is possible to observe the
evolution of annotators in their understanding of
technical words. For instance, this effect can typ-
ically be observed with words meaning disorders
and procedures. Nevertheless, with other types of
words (chemicals, borrowings, proper names) no
evolution is observable.

Notice that the same reference data have been
used with supervised categorization algorithms. In
this case, automatic algorithms can reproduce the
reference categorization with F-measure over 0.80
and up to 0.90, which is higher than the inter-
annotator agreement rate. Besides, in the super-
vised categorization task, the behaviour of features
is different from what we can observe in unsuper-
vised clusters: several individual features can re-
produce the reference categories while the best re-
sults are obtained with the whole set of features.

7 Conclusion and Future work

According to our hypothesis, linguistic regulari-
ties, when they occur systematically, can help in
decoding and understanding of technical words
with internal structure (like compounds or derived
words). To test the hypothesis, we work with
French medical words. Almost 30,000 words are
annotated by five annotators and assigned in one
of the three categories I can understand, I am not
sure, I cannot understand. For each annotator, the
words are ordered randomly.

We then perform an analysis of the whole set of
words, and of words ending with -ite and -tomie.
Our results suggest that several annotators show
the learning effect as the annotation is going on,
which supports our hypothesis and the findings
of psycholinguistic work (Lüttmann et al., 2011).
This effect is observed for the whole set of words
and for the two analyzed suffixes. Yet, with chem-
icals, borrowings and proper names, we do not ob-

serve the learning effect.
These observations have been corroborated with

clusters generated using linguistic and extra-
linguistic features. Several clusters are dedicated
to words from either 1 (I can understand) or 3
(I cannot understand) categories. Besides, when
clusters contain some semantically homogeneous
words (disorders, procedures...) we can observe
the expected learning effect. These results are very
interesting and confirm our hypothesis, according
to which linguistic regularities can help to decode
and understand technical and unknown words.
Appropriate features can also help to distinguish
between understandable and non-understandable
words with unsupervised methods. Correlations
between social and demographic status and under-
standing require additional annotations. It will be
studied in the future.

We have several directions for future work: (1)
collect the same type of annotations, but providing
semantics of some or of all components, although
it will be difficult to verify whether this informa-
tion is really exploited by annotators; (2) collect
the same type of annotations, but permitting the
annotators to use external sources of informations
(dictionaries, online examples...). Since this ap-
proach requires more time and cognitive effort,
smaller set of words will be used; (3) analyze the
evolution of understanding of words taking into
account a larger set of components; (4) validate
the observations with tests for statistical signifi-
cance; (5) exploit the results for training and ed-
ucation of non-experts in order to help them with
the understanding of medical notions; (6) exploit
the results for simplification of technical texts. For
instance, features of words that show understand-
ing difficulties can be used to define classes of
words that should be systematically simplified.

The resources built in this work are freely avail-
able for the research purposes: http://natalia.
grabar.free.fr/resources.php#rated.
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54(1):171–202.

S Frisson, E Niswander-Klement, and A Pollatsek.
2008. The role of semantic transparency in the pro-
cessing of english compound words. Br J Psychol
99(1):87–107.

N Gala, T François, and C Fairon. 2013. Towards a
french lexicon with difficulty measures: NLP help-
ing to bridge the gap between traditional dictionaries
and specialized lexicons. In eLEX-2013.

L Goeuriot, N Grabar, and B Daille. 2007. Car-
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Abstract

In this paper, we describe the concept of
entity-centric information access for the
biomedical domain. With entity recog-
nition technologies approaching accept-
able levels of accuracy, we put forward
a paradigm of document browsing and
searching where the entities of the domain
and their relations are explicitly mod-
eled to provide users the possibility of
collecting exhaustive information on re-
lations of interest. We describe three
working prototypes along these lines:
NEW/S/LEAK, which was developed for
investigative journalists who need a quick
overview of large leaked document col-
lections; STORYFINDER, which is a per-
sonalized organizer for information found
in web pages that allows adding enti-
ties as well as relations, and is capa-
ble of personalized information manage-
ment; and adaptive annotation capabilities
of WEBANNO, which is a general-purpose
linguistic annotation tool. We will dis-
cuss future steps towards the adaptation
of these tools to biomedical data, which
is subject to a recently started project on
biomedical knowledge acquisition. A key
difference to other approaches is the cen-
tering around the user in a Human-in-the-
Loop machine learning approach, where
users define and extend categories and en-
able the system to improve via feedback
and interaction.

1 Introduction

Recently, knowledge management as a field faced
several challenges. On one hand, sophisticated
technologies and standards were developed to sup-
port knowledge-based modeling, such as domain
ontologies including Disease Ontology, MeSH,
and Gene Ontology1 and the Semantic Web de-
scription languages and infrastructures including
RDF, OWL, SPARQL and others2. On the other
hand, the current approaches face three major is-
sues: (1) knowledge bottleneck: resources re-
quired for knowledge management such as domain
ontologies are not available for many domains and
languages; (2) the overall approach of knowledge
management did not get widely spread due to the
fact that it imposes a large burden on the user,
such as annotation or expertise with complex tools
such as Protégé3; (3) modeling entire domains
as large as the medical domain with (English-
oriented) knowledge resources does not meet re-
quirements of users, who are mostly specializing
in a certain sub-field and also need to operate in
their local language.

We propose to reload this traditional heavy-
weight top-down knowledge management ap-
proach and replace it with a much simpler and
practical problem-oriented bottom-up approach.
We choose the biomedical domain as the area of
interest for our planning. Medical researchers
have to process enormous amounts of literature –
PubMed4 adds about half a million papers to its
index each year. Literature search and reason-

1
http://do-wiki.nubic.northwestern.edu;

http://ncbi.nlm.nih.gov/mesh; http://geneontology.org
2
http://www.w3.org/standards/semanticweb

3
http://protege.stanford.edu

4
http://www.ncbi.nlm.nih.gov/pubmed
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ing is demanding, because of the need to reveal
and maintain many complex relationships between
numerous sets of entities. In order to alleviate
the efforts of biomedical research related to litera-
ture we propose a novel conception to information
management based on bottom-up construction of
a problem-oriented ontology, called entity graph
(EG) in this paper. Entity graphs provide a new
tool for medical researchers that (1) help to doc-
ument relations between biomedical entities in a
compact intuitive and interpretable form; (2) gen-
erate new relations in a semi-automatic way based
on corpus analysis; (3) communicate new biomed-
ical knowledge in a form of an easily interpretable
interactive graph and (4) share knowledge and an-
notations amongst researchers.

2 Related Work

An early conception of a system for personal in-
formation management was Memex (Bush, 1945).
The proposed design suggested that all documents
of a person should be indexed to be easily acces-
sible for consultation and for sharing with other
people. Several decades later, the Web and social
networks implement this vision yet only partially.
According to Davenport (1994), Knowledge Man-
agement (KM) is a process of capturing, distribut-
ing, and effectively using knowledge. According
to Gruber (1995), an ontology is an explicit spec-
ification of conceptualization. Studer et al. (1998)
defines ontology as a formal, explicit specification
of shared conceptualization. Multiple other infor-
mal and formal definitions of ontology are pre-
sented by Cimiano et al. (2014). Here “conceptu-
alization” is a worldview, a system of conceptions
and their relations.

Ontologies can be either general or domain-
specific. Today’s content management systems are
largely accessed with facetted search, i.e. with tax-
onomically organized vocabularies forming a se-
mantic facet. Users of the system must learn the
vocabulary in order to assign the correct terms to
newly ingested documents and to perform effec-
tive searches. The Cyc project (Lenat and Guha,
1990) was an early ontology-driven attempt to
model world knowledge. Jurisica et al. (1999) pre-
sented an overview of using ontologies for infor-
mation management. Later, knowledge manage-
ment using ontologies was driven by the Seman-
tic Web vision (Berners-Lee et al., 2001). This
eventually led to the Linked Open Data cloud

of resources, containing a comprehensive collec-
tion of interlinked ontologies. One limiting fac-
tor of widespread usage of ontologies is the heavy
burden of their manual construction: all con-
cepts, attributes and relations in ontologies are
added and updated manually. Moreover, even
if suitable ontologies for a target domain exist,
they do not come with mechanisms to recognize
their concepts in unstructured text, motivating ap-
proaches that learn ontologies from text (see Bie-
mann (2005) and Buitelaar et al. (2005)).

Both EGs and ontologies aim at providing a
shared explicit conceptualization of a certain do-
main. However, there are several important dif-
ferences between these two resources. First, EGs
are task- and/or problem-specific descriptions of
a domain, while ontologies are usually designed
as generic knowledge representations for a given
domain. Ontologies are commonly developed as
general-purpose resources that are supposed to
model a certain domain without taking into ac-
count specific needs of certain application. This
leads in practice to the fact that most resources
should be specifically tailored to fit the need of
the given task, problem or application. Along
these lines, Hirst (2014) notes that the worldview
captured in ontologies is based on the author of
the ontology, not on the user, and the knowledge
is not contextualized. We argue that this is one
of the key reasons of only moderate success of
ontology-based knowledge management after 15
years of development. Our approach will tackle
this shortcoming: entity graphs are a knowledge
representation tool that is designed to be strictly
task-oriented. Such a graph would contain only
concepts and relations relevant to the described
problem at hand omitting any irrelevant details.

Mind maps (MMs) are visual diagrams that
help to organize information about certain top-
ics. Entity graphs have several common aspects
with Mind Maps and similar knowledge manage-
ment structures, such as concept maps and concep-
tual diagrams (Willis and Miertschin, 2006; Ep-
pler, 2006), but are not confined to a tree struc-
ture, hence they are more apt for sharing and bring
provenance in documents into the representation.

BEST is a biomedical entity search tool for
knowledge discovery from biomedical literature
(Lee et al., 2016). Although PubMed (the free
public interface to MEDLINE, which provides ac-
cess to bibliographic information in MEDLINE as
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well as additional life science journals) provides
a starting point to researchers, it only provides
lists of relevant articles, leaving the task of extract-
ing required information to the researchers them-
selves. Existing context extraction systems have
limitations, such as 1) they provide outdated or
incomplete results 2) the processing takes longer,
and 3) most of them depend on conventional
search system structures to return relevant infor-
mation. BEST is developed to face the challenges
of getting relevant documents from biomedical lit-
erature publications, addressing most challenges
by directly returning ten relevant entities for a
user’s query instead of a list of documents. Our
approach differs from BEST in many aspects such
as 1) instead of relying on existing entity dictionar-
ies, we use a semi-supervised entity recognition
system, 2) instead of returning a pre-computed
list of (indexed) results, our approach directs the
researcher in pinpointing the required informa-
tion with directed visual exploration, i.e. a guided
search, 3) in addition to pre-defined entity types
or dictionaries, our approach allows researchers
to define their own entity types without the need
of advanced pre-processing or text mining knowl-
edge, i.e. adaptive annotation.

Zhang and Elhadad (2013) propose an unsuper-
vised approach for detecting biomedical entities.
Instead of hand-crafted rules or annotated dataset,
this work first identifies classes of entities based
on UMLS5 semantic groups in order to collect
seed terms. Next, they extract chunks in order to
automatically determine named entity boundaries.
Finally, they use a similarity based approach to
automatically group named entities into specific
semantic classes. While this approach is bene-
ficial to identify biomedical entities, it has some
drawbacks compared to our approach: 1) their ap-
proach depends on the collection of seed terms,
2) it assumes that every biomedical document is
available at all times.

3 Three Technologies for Entity-Centric
Information Access

While we target the biomedical domain, we will
describe our previous work on other domains. The
entity types might change, but the principles of the
entity graph is transferable across domains.

5Unified Medical Language System (UMLS) is a widely
used ontology of biomedical terms available at https://
www.nlm.nih.gov/research/umls/.

3.1 Adaptively Annotating Entities with
WEBANNO

Supervised named entity recognition (NER) sys-
tems require a substantial amount of annotated
data to achieve high quality performance. We
present an interactive and adaptive annotation ap-
proach. Instead of using a large sets of general
purpose annotation corpora, we focus on specifi-
cally collecting high quality sets of in-domain an-
notations. In a case study for adaptive biomedical
entity annotation, we used the automation compo-
nent of WEBANNO, which is a web-based anno-
tation tool with an online machine learning com-
ponent (Yimam et al., 2014). Annotations are cre-
ated in an interactive and incremental approach.
The process is interactive in such a way that the
tool suggests annotations that can be accepted, re-
jected or corrected by the annotator, whereby ma-
chine learning model gets better in time.

3.2 Case Study: Entity Annotation

We conducted an annotation task for identify-
ing medical entities using WEBANNO automa-
tion, which is focused on B-Chronic lymphocytic
leukemia (B-CLL). A medical expert selects do-
main related abstracts for annotation. Unlike pre-
vious approaches, the expert starts annotating texts
without prior determination of the entity types.
During the annotation process, important entities
are identified that could help retrieving relevant
documents about B-CLL. In a first step, we an-
notated five abstracts and use them for training to
produce suggestions.

The following entity types are identified
throughout the task: CELL, CONDITION,
DISORDER, GENE, MOLECULE, PROTEIN,
MOLECULAR PATHWAY and SUBSTANCE.
We can see the following advantages of the adap-
tive annotation approach: 1) it makes the anno-
tation task faster by producing correct predictions
after annotating only a few number of documents,
2) the process helps the annotator to determine
entity types unlike traditional approaches where
the types are predefined by experts beforehand.
This makes the identification of entity types more
complete and robust (see details in Yimam et al.,
2016a).

One of the typical relations between biomedical
entities describe the cause and effect of diseases.
Again, supervised machine learning approaches
for automatic relation extraction requires more ef-
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Figure 1: NEW/S/LEAK UI overview of the GENIA term annotation corpus. The example shows a
B-CLL query and the graph shows involved DNA regions, “c-myc gene” is selected.

fort. For rapid annotation of relations, the relation
copy annotator in WEBANNO was used, where re-
lation suggestions are provided as soon as annota-
tors create the first relation annotations. This func-
tionality has the following advantages: a) experts
can annotate entities as well as relation annota-
tions at the same time, b) instances of the same
entity and relation are automatically suggested for
the running document as well as other unfinished
documents.

3.3 Collection Insights with NEW/S/LEAK

NEW/S/LEAK is a tool designed to support inves-
tigative data journalism by exploring large sets of
input documents, typically leaked documents (Yi-
mam et al., 2016b). Named entities, such as per-
sons, organizations, and locations, are automat-
ically identified and ranked by importance. A
global graph of entities is constructed, which is
subsequently used to display high-level interac-
tions among those entities. The tool is intended
to guide investigative data journalists, by offering
a rich set of possible interactions, among which
are: full text search, entity merger or removal,
document aggregation using meta-data, and many
more.

Journalists, as targeted user group, can browse
the document collection using the interactive inter-
face (see Figure 1). It enables faceted document
exploration within several views: 1) the graph
view shows named entities and their relations, 2)
the document timeline view shows document fre-
quency in different epochs, 3) the document view
is composed of the document list and a document
text for reading, and 4) the metadata views in-

clude the search- and history views, which offer
different metadata for filtering relevant or irrele-
vant documents.

The views are interactive, i.e. users can browse
and explore the document collection on demand.
The user starts with exploring entities and their
connections in the graph view or by searching
for entities and keywords. All interactions in the
views define a filter that constrains the current doc-
ument set, which in turn changes the displayed in-
formation content. User-selected entities are high-
lighted in the documents.

Graph view: entities and their co-occurrences
The graph view shows a set of entities as nodes
and their connections as links. The node size de-
notes the frequency of an entity, the node color
denotes the entity type. The number of shown en-
tities can be set by the user individually for each
facet (entity type). The edge thickness and label
denotes the size and relation of co-occurrence of
the involved entities within the documents.

Document timeline The document timeline lists
the number of documents in a specific epoch.
Users can refine their search to see the document
distribution over years, months or days.

Document view The document view shows a list
of documents with their heading as selected by the
currently active filters. For large document collec-
tions, the documents are loaded on demand. The
document text view shows the text of the docu-
ment, where the entities displayed in the graph
are highlighted and underlined. The underline
color corresponds to the type of entity. Selected
entities in the graph are highlighted, which en-
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ables a “close reading” mode to verify hypotheses
formed in the so-called “distant reading” visual-
ization (Moretti, 2007).

Metadata, search and history tracing This view
is mainly used to filter documents based on dif-
ferent criteria such as metadata, entities, search
terms/key words, etc. The history tracer helps the
journalist to modify the search facets.

3.4 Personalized Knowledge Management
with STORYFINDER

STORYFINDER is a toolkit that aims to keep in-
formation managed which is found and processed
while browsing the web (Remus et al., 2017). The
major goal is to organize a personal history of bits
of information in form of entities and their rela-
tions rather than a history of web pages while still
being able to find the source of a particular infor-
mation bit in the respective web pages.

The system consists of three major components
(cf. Fig. 2): 1) the Mozilla Firefox browser plu-
gin, which: listens and reacts to a user’s actions;
initiates the analysis of a currently visited web-
page on the backend server; and provides a side
pane view to visualize the collected information;
2) the server backend, which: performs the anal-
ysis of a webpage; extracts metadata and stores the
information for later access; and 3) the interactive
web page, which: provides real-time access to the
new information and is embedded in the plugin’s
side pane and can be accessed as a regular web
page too.

In its current form, STORYFINDER is targeted
for processing news texts; it automatically extracts
named entities and draws an edge in a knowl-
edge graph representation if two distinct entities
co-occur in the same sentence (Fig. 3a).

The entities are subsequently highlighted within
the current article for better visual appearance
(Fig. 3b). The graph, i.e. the entities as nodes and
their relations as edges are fully editable (Fig. 3c).

Due to the modular REST architecture regard-
ing the NLP components within the backend
server, every automatic component is exchange-
able, e.g. in order to automatically identify med-
ical entities such as proteins, we merely need a re-
liable protein tagger. In order to build such a tag-
ger, annotated data is needed, which calls for an
integration with adaptive annotation(Section 3.1).

Storyfinder
Webserver

SF	WebserverSF	WebserverNLP
Components

Storyfinder
Browser
Plugin

Database

websockets
REST	services

Figure 2: Schema of STORYFINDER’s compo-
nents: The browser plugin, the server backend,
and the interactive web page.

(a) The entity ‘Philipp Lahm’ is selected, other nodes and
edges are grayed out except direct neighboring edges and
nodes. Additionally an edge is hovered (rightmost thick
edge).

(b) Screenshot of the default STORYFINDER plugin view. A
currently visited webpage is analyzed, and the extracted en-
tities are highlighted in an overlay. Entities are rendered in a
graph together with their relations in the STORYFINDER web-
page, which is shown in a side pane of the browser.

(c) Manually adding entities of arbitrary kind can be accom-
plished via the plugin by right clicking any term or phrase.

Figure 3: Selected STORYFINDER screenshots.

4 Towards Information Management
with Human-in-the-Loop

Within our newly started project, we will imple-
ment a prototype that uses the entity graph repre-
sentation as the primary means for visualizing and
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Figure 4: An entity graph summarizing the literature research on B-CLL. The key symptoms, drugs and
treatments around the B-CLL are shown with their labeled relations. From labels, it becomes clear how
entities relate to the topic, click on edges retrieves documents where connected concepts co-occur.

accessing biomedical research documents, inte-
grating elements from prototypes described above.
Key to the approach is to think the user in the
center of the process and offer the user an adap-
tive ML environment (Holzinger, 2016; Holzinger
et al., 2017) where manual effort in terms of an-
notating entities or classifying relations immedi-
ately pays of in an improved representation in the
EG. To exemplify how this could look like, Fig-
ure 4 shows an example from leukemia research.
Entities and their relations have been annotated
and semi-automatically recognized in a personal
collection of MEDLINE papers (Yimam et al.,
2016a). Interacting with the network allows to find
respective documents.

With these actions, the biomedical researcher
can utilize the entity graph as a visually support-
ive notepad. Note that this goes well beyond a
traditional notepad since collections of properties
of entities usually do not get linked, and this also
goes well beyond creativity tools such as e.g. mind
maps, since it does not only displays concepts, but
facilitates linking to source documents. Note fur-
ther that while automatic methods aid the process,
the biomedical researcher is in full control of the
entity graph and can correct errors in the automatic
processing in case they are relevant for the ques-
tion of investigation.

Last, but not least, the individual entity graphs
can be merged into a global structure by sharing
among researchers. Thus in our approach, the
conceptualization of a domain will be modeled
from BOTTOM-UP, and not from TOP-DOWN as in
the traditional knowledge management approach.
Therefore, collaborative efforts of the crowd will

lead to construction of a global entity graph of
a domain in an incremental and problem-driven
way. The global graph can be used to softly sug-
gest edge annotations while a user constructs a
new graph, making the overall process of entity
graph construction backed up by a huge global
entity graph, which has provenance information
(i.e. who has entered information, based on which
document) for mutual understanding. The global
graph can also incorporate information from re-
sources, such as MeSH, Gene and Disease Ontol-
ogy. Challenges in the adaptation include a high-
quality tagging of biomedical entities, preprocess-
ing such as dependency parsing for relevant lan-
guages, the design of the user interface and a re-
sponsive online-adaptive machine learning model.

5 Conclusion

We proposed a new schema for entity-centric in-
formation extraction and -access for biomedical
entities. We highlighted current drawbacks and
new challenges, and presented existing tools for
information extraction (WEBANNO), visualiza-
tion and navigation (NEW/S/LEAK), and person-
alized information and knowledge management
(STORYFINDER), which all together can be com-
bined, adapted, and re-focused in order to pro-
vide a data driven, bottom-up, conceptualization
approach. Here, the Human-in-the-Loop is an in-
tegral component, where not only the machine
learning models for information extraction are
supported and improved by users over time, the
final entity graph becomes larger, cleaner, more
precise and thus more usable for the users.
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Abstract

We explored a new approach to named
entity recognition based on hundreds of
machine learning models, each trained to
distinguish a single entity, and showed
its application to gene name identifica-
tion (GNI). The rationale for our approach,
which we named “one model per entity”
(OMPE), was that increasing the num-
ber of models would make the learn-
ing task easier for each individual model.
Our training strategy leveraged freely-
available database annotations instead of
manually-annotated corpora. While its
performance in our proof-of-concept was
disappointing, we believe that there is
enough room for improvement that such
approaches could reach competitive per-
formance while eliminating the cost of
creating costly training corpora.

1 Background

Recognizing names in text is a longstanding task
in natural language processing (NLP) known as
named-entity recognition (NER). In biomedical
text mining (or BioNLP), the focus of NER is on
certain technical names (terms) such as those of
chemical compounds, genes, species and anatom-
ical parts. Recognizing such names alone, how-
ever, is of limited application as, in practice, they
often need to be linked to other facts. This can
be done by first mapping them to unique name
identifiers—a task known as normalization or
grounding. Recognizing and normalizing names
of genes and gene products, in particular, has
drawn much attention from the BioNLP commu-
nity (Leser and Hakenberg, 2005). These names
are usually considered a single class of terms
due to their overlapping vocabularies (Hatzivas-
siloglou et al., 2001). Thus, here we refer to them
as simply gene names.

The tasks of gene name recognition (GNR) and
gene name normalization (GNN) involve, respec-
tively, the recognition and normalization of gene
names found in text. Gene name identification
(GNI) is the combination of gene name recogni-
tion and normalization (GNR + GNN) (see the
framework by Krauthammer and Nenadic (2004)).
State-of-the-art GNI methods involve machine
learning algorithms, such as conditional random
fields (CRF), trained under supervised learning.
Supervised learning requires gold-standard train-
ing and testing sets, which for GNI typically are
sets of documents (corpora) that have been man-
ually annotated for gene names by expert cura-
tors. Several community challenges have been or-
ganized to foster the improvement of GNI algo-
rithms (Morgan et al., 2008; Lu et al., 2011). How-
ever, despite such efforts, even the best algorithms
suffer from an important weakness. Namely that
their performance has been shown to degrade out-
side of their training and testing corpora, decaying
to levels barely above those of rule-based systems
involving dictionary-matching rules together with
filtering of noisy names (Rebholz-Schuhmann
et al., 2013; Rodriguez-Esteban, 2016b,a).

It has been suggested that the shortcomings of
current GNI machine learning algorithms could
be addressed in two ways: (1) by training
models with different, diverse corpora (Rebholz-
Schuhmann et al., 2013) (see, in that respect, the
work of Kaewphan et al. (2016) with cell line
names), and (2) by using “domain adaptation”
techniques, which consist in adapting machine
learning models to the characteristics of the in-
put text. The limited size and number of exist-
ing gold-standard corpora, and the cost of creating
new ones, represent, however, a bottleneck for (1).
For (2), experiments with domain adaptation in
biomedical text have led, thus far, only to modest
improvements in performance (Miwa et al., 2012).

Here we describe an alternative approach that
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can be applied to problems that require the iden-
tification of large but finite sets of entities, par-
ticularly in biomedicine. To begin with, instead
of using a gold-standard corpus as training set, we
propose utilizing the wealth of manual annotations
that currently exist in biomedical databases. In-
deed, several freely-available databases provide a
growing number of annotations concerning gene
name identifiers associated to biomedical docu-
ments. The main drawback of these annotations is
that they are weakly labeled, as they do not specify
the precise location in which the genes are men-
tioned within the documents. However, there are
ways to infer these locations (Jain et al., 2016).

While past GNI studies have not leveraged an-
notations from biomedical databases, there are ex-
amples of their use for GNN (Wermter et al., 2009;
Zwick, 2015; Chen et al., 2015). In these stud-
ies contextual features were created out of the an-
notated biomedical documents to resolve ambigu-
ous gene mentions. Besides for GNN, weakly-
labeled database annotations have been used in
BioNLP for identifying protein-specific residues
(Ravikumar et al., 2012) and annotating Med-
line abstracts with Gene Ontology terms (Gob-
eill et al., 2013). In another example, Furrer et
al. (2014) used a biomedical database called Bi-
oGRID (Chatr-Aryamontri et al., 2015) for the
purpose of training and testing an algorithm for
extracting protein-protein interactions (PPI).

Leveraging database annotations for GNI is not
straightforward. We have implemented our ap-
proach in a way that, as far as we can tell,
has not been described in the NER literature be-
fore (biomedical or otherwise). Our method in-
volves training many machine learning models,
each model trained to identify a single entity (i.e.
a single gene) rather than, as it is commonplace,
training one or a handful of models to identify all
entities. We call this approach “one model per en-
tity” (OMPE).

2 Methods

As building block for our OMPE system we used
BANNER (Leaman and Gonzalez, 2008), which
is a machine learning algorithm for NER built on
CRF. While BANNER is based on a generic model
that can be trained to identify any class of terms,
it has shown state-of-the-art performance in GNR
(Kabiljo et al., 2009). Our strategy consists in us-
ing multiple BANNER models, each model being

responsible for detecting the mentions of a single
gene. That means that a gene name mention that
is recognized by a BANNER model can be auto-
matically mapped to the gene for which the model
was trained.

2.1 Training set

To create our training set we built first a
database of positive training examples contain-
ing sentences that mention gene names. Each
sentence in the database was associated to a
gene identifier (NCBI Gene ID), correspond-
ing to a gene mentioned in the sentence, and
to a document identifier (PubMed ID), corre-
sponding to the document source of the sen-
tence. The {NCBI Gene ID, PubMed ID}
pairs came from the following publicly-available
databases: gene2pubmed, UniProt, BioGRID
(Chatr-Aryamontri et al., 2015) and Gene Refer-
ence into Function (GeneRIF) (see Table 1).

Source Genes Documents Mentions
gene2pubmed 34 004 493 620 1 087 465
UniProt 21 383 22 539 68 966
BioGRID 11 832 23 925 66 358
GeneRIF 17 462 386 927 641 354

Table 1: Statistics of the different datasets used.

Because these databases do not specify the loca-
tion of the gene mentions in the source documents,
we retrieved each source document from the Med-
line baseline 2015 and attempted to find their loca-
tions. In order to do that we leveraged gene names
and synonyms from the NCBI Gene database.
This database, however, does not include all the
gene name variations and synonyms that authors
use in practice (Hirschman et al., 2002; Liu et al.,
2006). To increase recall we therefore expanded
the list of gene names and synonyms following
Schuemie et al. (2007). By using this expanded list
to look up gene names in the source documents we
created a set of positive examples for each of the
genes annotated in the aforementioned databases.

For training (and testing) we only considered
genes for which we had at least 32 positive ex-
amples (this cut-off was a compromise between
coverage and amount of training data available),
which totaled 2180 with a median of 281 positive
examples per gene. These genes covered approxi-
mately 80% of all gene mentions appearing in the
test corpus.
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Negative training examples were selected ac-
cording to different strategies. First, we created
certain modified versions of the positive examples.
Modifications consisted in the deletion of words
within the gene names that made reference to a
certain function, such as receptor, inhibitor, en-
hancer. For example, while TNF-α receptor refers
to gene ID 7132, TNF-α corresponds to gene ID
7124.

The second type of negative examples that we
selected consisted in positive examples belonging
to genes that share synonyms. For example, the
gene name FAT may refer to gene ID 2195 or
948. Thus, positive examples for gene 948 can be
used as negative examples for gene 2195. Finally,
we included as negative examples randomly se-
lected sentences from the English Wikipedia (not
from any particular domain) and positive exam-
ples from randomly selected genes.

2.2 Test set
For testing the performance of our OMPE sys-
tem we used a modified dataset based on the gold
standard from the BioCreative 2 Gene Normal-
ization (BC2GN) challenge (Morgan et al., 2008).
The BC2GN training set covers 281 abstracts and
684 gene annotations, and the testing set covers
262 abstracts and 785 gene annotations. As we
used an independent training set based on freely-
available database annotations we could employ
both BC2GN training and testing datasets to create
our BC2GNmod test dataset.

When building the BC2GNmod dataset we only
considered gene annotations for 621 unique genes
from the 1156 genes present in the original
BC2GN datasets—those for which we had more
than 32 positive examples in our training database.
Thus, BC2GNmod contained a total of 841 human
gene annotations.

We compared our OMPE system against GNAT
(Hakenberg et al., 2008, 2011), which is a state-
of-the-art system for GNI (Rebholz-Schuhmann
et al., 2013). We evaluated the prediction qual-
ity of our system according to the number of true
positives (TP), false positives (FP) and false neg-
atives (FN), and according to precision (P), recall
(R) and F-measure (F).

2.3 Computation
We made use of two different computational con-
figurations for training and testing. First, we used
a server with 40 CPU cores at 2.4 GHz and 567 GB

RAM. This server was used for both generating
the training set and making the final predictions.
As training the models is the most computationally
demanding task, we used a cluster computer with
164 nodes, each node possessing 2 CPUs with 12
cores (Intel Xeon Processor E5-2680 v3) and 256
GB of memory. In this configuration the median
model training time was 212 seconds.

3 Results

Two versions of the OMPE system were tested and
compared against the output of GNAT. The first
version (OMPE1) used the standard BANNER im-
plementation, in which the most probable class
is associated to every token. The second version
(OMPE2) used a modified BANNER that required
the probability of a token being a mention to be
larger than a certain threshold, which we set to
0.95.

Results for predictions over the BC2GNmod

dataset can be seen in Table 2. GNAT showed
a high performance, with a recall of 0.762 and a
precision of 0.881, corresponding to 892 TPs and
only 121 FPs. The OMPE1 system achieved, on
the other hand, a recall of 0.331 and a precision of
0.215 caused by the large number of FPs, 1413.

Method TP FP FN P R F
GNAT 892 121 278 .881 .762 .817
OMPE1 387 1413 783 .215 .331 .261
OMPE2 355 575 815 .382 .303 .338

Table 2: Performance of the 3 different methods.

To reduce the number of FPs we set a thresh-
old to the probability of accepting a prediction
(OMPE2). By using the threshold we dramatically
reduced the number of FPs from 1413 to 575, in-
creasing the precision to 0.382 while slightly de-
creasing the recall to 0.303.

In Figure 1 we show a comparison of each
method’s individual performance. In this figure,
the first row compares OMPE1 and GNAT, while
the second row compares OMPE2 and GNAT. The
last row compares OMPE1 and OMPE2. Light
colors represent the individual performance of the
methods and dark colors the difference between
them. The first and second column show the pre-
cision and recall, respectively. Genes were or-
dered according to performance differences be-
tween methods.
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Figure 1: Difference in precision and recall of the
different methods on an individual gene basis. The
first row compares OMPE1 and GNAT, while the
second row compares OMPE2 and GNAT. The last
row compares OMPE1 and OMPE2. The first and
second column show the precision and recall, re-
spectively. Light colors represent the individual
performance of the methods and dark colors the
difference between them. Genes were ordered ac-
cording to performance differences between meth-
ods.

Figure 1 shows that there is a set of genes in
which one of the algorithms works well but the
other algorithms do not. Moreover, the use of a
threshold in OMPE2 leads to an increase in the
precision over a large number of genes and to a de-
crease in only a small number of them. Figure 2,
on the other hand, shows the cumulative frequency
distribution of precision and recall for genes pre-
dicted in the test datasets with the different meth-
ods.

4 Discussion

An advantage of the OMPE approach is that it
allows targeted performance improvements with
respect to specific gene names. Positive exam-
ples and synonyms belonging to particularly chal-
lenging gene names can be modified interactively

Figure 2: Cumulative frequency distribution of
genes at each precision and recall level. (A) Re-
call for prediction of genes in the test dataset. (B)
Precision for prediction of genes in the test dataset.
(C) Precision for algorithms focused on the genes
known to be present in the test dataset.

without the need for retraining the entire sys-
tem (all models in our case), unlike in interac-
tive single-model approaches such as tagtog (Ce-
juela et al., 2014). Another advantage of OMPE
is its robustness, as it is not trained on a particular
hand-selected corpus. Thus, our results with the
BC2GNmod corpus are not biased by the training
set utilized.

A challenge for training the OMPE system is
the selection of negative examples. It is impor-
tant to select negative examples that are as simi-
lar as possible to the positive examples, meaning
examples that are closest to the class separation
boundary—analogous to what support vectors rep-
resent for support vector machines (SVMs). One
of our approach’s limitations is its reduced recall
due to the low number of positive examples that
exist for many genes. Such genes are, on the other
hand, less likely to be mentioned in the biomedical
literature and, as biomedical databases continue to
grow, the number of positive examples for those
genes will keep increasing as well.

Finally, our focus was only on human genes.
The identification of genes from additional species
would have required greater computational re-
sources. An OMPE system that covered all
protein-expressing genes would need to be trained
for around 20 000 genes (Ezkurdia et al., 2014).
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In this sense, and in the reliance on large, grow-
ing biomedical databases, our approach has a fu-
turistic stance, meaning that it will become more
feasible with time. As “Big Computing” infras-
tructure, such as cloud computing, becomes in-
creasingly available and more powerful, it will be-
come more practical to implement systems such
as OMPE. It is important to stress that computa-
tional requirements differ greatly between training
an OMPE system and deploying it for prediction,
which requires far lower computational power.

Beyond the GNI example shown here, OMPE
can be used to identify other types of entities
with a finite cardinality, such as (in the BioNLP
field) diseases, cell types, cell lines and anatomical
parts. We have focused here on GNI because it has
been already widely investigated and has multiple
applications, such as the tracking of biomedical
facts and trends (Cokol and Rodriguez-Esteban,
2008; Cokol et al., 2007; Rodriguez-Esteban and
Loging, 2013). Beyond NER, the OMPE approach
could also be applied to other classification prob-
lems in which the class cardinality is below a
computationally-feasible threshold. The rationale
would again be that increasing the number of mod-
els could ease (”relieve”) the learning task to each
individual model.

5 Conclusion

In this study we have shown a new approach for
GNI that takes advantage of the decreasing costs
of computing and the increasing availability of an-
notated data to train hundreds of machine learn-
ing models. Our proof of concept did not reach
acceptable performance levels but, due to the fact
that there remains ample room for potential im-
provements, such strategies could become com-
petitive for GNI and other domains in the future.
Following the remarks from Halevy et al. (2009)
in “The unreasonable effectiveness of data,” we
should learn to “use available large-scale data
rather than hoping for annotated data that isn’t
available.”

References

JM Cejuela, P McQuilton, L Ponting, SJ Mary-
gold, R Stefancsik, GH Millburn, B Rost,
and FlyBase Consortium. 2014. tagtog:
interactive and text-mining-assisted anno-
tation of gene mentions in PLOS full-text

articles. Database (Oxford) 0(bau033).
https://doi.org/10.1093/database/bau033.

A Chatr-Aryamontri, B J Breitkreutz, R Oughtred,
L Boucher, S Heinicke, D Chen, C Stark,
A Breitkreutz, N Kolas, L O’Donnell, T Reg-
uly, J Nixon, L Ramage, A Winter, A Sellam,
C Chang, J Hirschman, C Theesfeld, J Rust,
M S Livstone, K Dolinski, and M Tyers. 2015.
The BioGRID interaction database: 2015 update.
Nucleic Acids Res 43(Database issue):D470–478.
https://doi.org/10.1093/nar/gku1204.

G Chen, J Zhao, T Cohen, C Tao, J Sun,
H Xu, E V Bernstam, A Lawson, J Zeng,
A M Johnson, V Holla, A M Bailey, H Lara-
Guerra, B Litzenburger, F Meric-Bernstam, and
W Jim Zheng. 2015. Using ontology fingerprints
to disambiguate gene name entities in the biomed-
ical literature. Database (Oxford) 2015:bav034.
https://doi.org/10.1093/database/bav034.

M Cokol and R Rodriguez-Esteban. 2008. Vi-
sualizing evolution and impact of biomedical
fields. J Biomed Inform 41(6):1050–1052.
https://doi.org/10.1016/j.jbi.2008.05.002.

M Cokol, R Rodriguez-Esteban, and A Rzhetsky. 2007.
A recipe for high impact. Genome Biol 8(5):406.
https://doi.org/10.1186/gb-2007-8-5-406.

I Ezkurdia, D Juan, J Rodriguez, A Frankish,
M Diekhans, J Harrow, J Vazquez, A Valencia, and
M Tress. 2014. Multiple evidence strands suggest
that there may be as few as 19 000 human protein-
coding genes. Hum Mol Genet 23(22):5866–5878.
https://doi.org/10.1093/hmg/ddu309.

L Furrer, S Clematide, H Marques, R Rodriguez-
Esteban, M Romacker, and F Rinaldi. 2014.
Collection-wide extraction of protein-protein in-
teractions. 6th International Symposium on
Semantic Mining in Biomedicine pages 61–66.
https://doi.org/10.5167/uzh-101472.

J Gobeill, E Pasche, D Vishnyakova, and
P Ruch. 2013. Managing the data deluge:
data-driven go category assignment improves
while complexity of functional annotation
increases. Database (Oxford) 2013:bat041.
https://doi.org/10.1093/database/bat041.

J Hakenberg, M Gerner, M Haeussler, I Solt,
C Plake, M Schroeder, G Gonzalez, G Ne-
nadic, and C M Bergman. 2011. The GNAT
library for local and remote gene mention
normalization. Bioinformatics 27:2769–2771.
https://doi.org/10.1093/bioinformatics/btr455.

J Hakenberg, C Plake, R Leaman, M Schroeder, and
G Gonzalez. 2008. Inter-species normalization of
gene mentions with GNAT. Bioinformatics 24:126–
132. https://doi.org/10.1093/bioinformatics/btn299.

53



A Halevy, P Norvig, and F Pereira. 2009.
The unreasonable effectiveness of data.
IEEE Intelligent Systems 24(2):8–12.
https://doi.org/10.1109/MIS.2009.36.

V Hatzivassiloglou, P A Dubou, and A Rzhet-
sky. 2001. Disambiguating proteins, genes,
and rna in text: a machine learning ap-
proach. Bioinformatics 17 Suppl 1:S97–106.
https://doi.org/10.1093/bioinformatics/17.suppl 1.S97.

L Hirschman, AA Morgan, and AS Yeh. 2002.
Rutabaga by any other name: extracting biolog-
ical names. J Biomed Inform 35(4):247–259.
https://doi.org/10.1016/S1532-0464(03)00014-5.

S Jain, K R, T T Kuo, S Bhargava, G Lin,
and C N Hsu. 2016. Weakly supervised learn-
ing of biomedical information extraction from cu-
rated data. BMC Bioinformatics 17 Suppl 1:1.
https://doi.org/10.1186/s12859-015-0844-1.

R Kabiljo, A B Clegg, and A Shepherd.
2009. A realistic assessment of meth-
ods for extracting gene/protein interactions
from free text. BMC Bioinformatics 10:233.
https://doi.org/10.1186/1471-2105-10-233.

S Kaewphan, S Van Landeghem, T Ohta, Y Van de
Peer, F Ginter, and S Pyysalo. 2016. Cell
line name recognition in support of the
identification of synthetic lethality in can-
cer from text. Bioinformatics 32(2):276–282.
https://doi.org/10.1093/bioinformatics/btv570.

M Krauthammer and G Nenadic. 2004. Term
identification in the biomedical litera-
ture. J Biomed Inform 37(6):512–526.
https://doi.org/10.1016/j.jbi.2004.08.004.

R Leaman and G Gonzalez. 2008. BANNER: an exe-
cutable survey of advances in biomedical named en-
tity recognition. Pac Symp Biocomput pages 652–
663. https://doi.org/10.1142/9789812776136 0062.

U Leser and J Hakenberg. 2005. What makes a
gene name? Named entity recognition in the
biomedical literature. Brief Bioinform 6(4):357–
369. https://doi.org/10.1093/bib/6.4.357.

H Liu, ZZ Hu, M Torii, C Wu, and C Fried-
man. 2006. Quantitative assessment of
dictionary-based protein named entity tag-
ging. J Am Med Inform Assoc 13(5):497–507.
https://doi.org/10.1197/jamia.M2085.

Z Lu, H Y Kao, C H Wei, M Huang, J Liu, C J Kuo,
C N Hsu, R T Tsai, H J Dai, N Okazaki, H C Cho,
M Gerner, I Solt, S Agarwal, F Liu, D Vishnyakova,
P Ruch, M Romacker, F Rinaldi, S Bhattacharya,
P Srinivasan, H Liu, M Torii, S Matos, D Cam-
pos, K Verspoor, K M Livingston, and W J Wilbur.
2011. The gene normalization task in BioCre-
ative III. BMC Bioinformatics 12 Suppl 8:S2.
https://doi.org/10.1186/1471-2105-12-S8-S2.

M Miwa, P Thompson, and S Ananiadou. 2012.
Boosting automatic event extraction from the
literature using domain adaptation and corefer-
ence resolution. Bioinformatics 28:1759–1765.
https://doi.org/10.1093/bioinformatics/bts237.

A A Morgan, Z Lu, X Wang, A M Cohen, J Fluck,
P Ruch, A Divoli, K Fundel, R Leaman, J Haken-
berg, C Sun, H H Liu, R Torres, M Krauthammer,
W W Lau, H Liu, C N Hsu, M Schuemie, K B Co-
hen, and L Hirschman. 2008. Overview of BioCre-
ative II gene normalization. Genome Biol 9 Suppl
2:S3. https://doi.org/10.1186/gb-2008-9-s2-s3.

K Ravikumar, H Liu, J D Cohn, M E Wall, and K Ver-
spoor. 2012. Literature mining of protein-residue
associations with graph rules learned through dis-
tant supervision. J Biomed Semantics 3 Suppl 3:S2.
https://doi.org/10.1186/2041-1480-3-S3-S2.

D Rebholz-Schuhmann, S Kafkas, J H Kim, C Li,
A Jimeno Yepes, R Hoehndorf, R Backofen, and
I Lewin. 2013. Evaluating gold standard cor-
pora against gene/protein tagging solutions and
lexical resources. J Biomed Semantics 4:28.
https://doi.org/10.1186/2041-1480-4-28.

R Rodriguez-Esteban. 2016a. Additional knowledge-
based analysis approaches. In W Loging, ed-
itor, Bioinformatics and Computational Biology
in Drug Discovery and Development, Cambridge
University Press, Cambridge, United Kingdom.
https://doi.org/10.1017/CBO9780511989421.011.

R Rodriguez-Esteban. 2016b. Understanding hu-
man disease knowledge through text mining:
What is text mining? In W Loging, ed-
itor, Bioinformatics and Computational Biology
in Drug Discovery and Development, Cambridge
University Press, Cambridge, United Kingdom.
https://doi.org/10.1017/cbo9780511989421.004.

R Rodriguez-Esteban and W T Loging. 2013.
Quantifying the complexity of medical re-
search. Bioinformatics 29:2918–2924.
https://doi.org/10.1093/bioinformatics/btt505.

M J Schuemie, B Mons, M Weeber, and J A Kors.
2007. Evaluation of techniques for increasing re-
call in a dictionary approach to gene and protein
name identification. J Biomed Inform 40:316–324.
https://doi.org/10.1016/j.jbi.2006.09.002.

J Wermter, K Tomanek, and U Hahn. 2009.
High-performance gene name normaliza-
tion with GeNo. Bioinformatics 25:815–821.
https://doi.org/10.1093/bioinformatics/btp071.

M Zwick. 2015. Automated curation of gene
name normalization results using the Konstanz in-
formation miner. J Biomed Inform 53:58–64.
https://doi.org/10.1016/j.jbi.2014.08.016.

54



Proceedings of the Biomedical NLP Workshop associated with RANLP 2017, pages 55–63,
Varna, Bulgaria, 8 September 2017.

Towards Confidence Estimation for
Typed Protein-Protein Relation Extraction

Camilo Thorne and Roman Klinger
Institut für Maschinelle Sprachverarbeitung
University of Stuttgart, Stuttgart, Germany

{firstname.lastname}@ims.uni-stuttgart.de

Abstract

Systems which build on top of informa-
tion extraction are typically challenged to
extract knowledge that, while correct, is
not yet well-known. We hypothesize that
a good confidence measure for relational
information has the property that such in-
teresting information is found between in-
formation extracted with very high con-
fidence and very low confidence. We
discuss confidence estimation for the do-
main of biomedical protein-protein rela-
tion discovery in biomedical literature. As
facts reported in papers take some time
to be validated and recorded in biomedi-
cal databases, such task gives rise to large
quantities of unknown but potentially true
candidate relations. It is thus important to
rank them based on supporting evidence
rather than discard them. In this paper,
we discuss this task and propose differ-
ent approaches for confidence estimation
and a pipeline to evaluate such methods.
We show that the most straight-forward
approach, a combination of different con-
fidence measures from pipeline modules
seems not to work well. We discuss this
negative result and pinpoint potential fu-
ture research directions.

1 Introduction

The ever increasing body of biomedical litera-
ture has motivated a growing interest over the
past 20 years in natural language processing
(NLP) and information extraction (IE) techniques
to retrieve, organize and index the knowledge it
contains (Rodriguez-Esteban, 2009; Subramaniam
et al., 2003). It has also spurred a number of
(shared) tasks and system competitions of which

the best known are the BioNLP Shared Task1 and
the BioCreative challenge2. Relevant subtasks
include named entity recognition (NER, Leaman
and Gonzalez, 2008), entity linking and normal-
ization to unique database identifiers (Zheng et al.,
2014), event (EE, Björne and Salakoski, 2015) and
relation extraction (RE, Tymoshenko et al., 2012;
Airola et al., 2008; Choi, 2016). The overall goal
is to identify biomedical entity mentions, disam-
biguate them w.r.t. biomedical databases and to
identify mentioned biomedical relations and, cru-
cially, discover new relations which are not avail-
able in structured resources yet.

When solving biomedical RE and IE tasks, the
standard focus is to build systems that achieve
high precision and recall at identifying known
relations in gold standards or in biomedical
databases and ontologies. This focus usually over-
looks a key dimension for relation discovery: ex-
traction relevance or trust. Indeed, when applied
to new text in the form of, e.g., recently pub-
lished biomedical papers or papers from transver-
sal domains such as bioinformatics, most discov-
ered relations can arguably be expected to come
up as “false”, without being per se false – but
unrecorded in gold standards. In other words,
discovered relations fall under one of three cate-
gories: (1) plainly true relations (as per biomedical
gold standards) (2) interesting relations that might
be true or false. (3) plainly false relationships (as
per biomedical gold standards). Our hypothesis
is that a useful confidence measure estimates the
quality of relations in this order, as we exemplify
in Figure 1.

In such a scenario, rather than dismissing all
such unknown (but interesting) relations, the goal
is to return a ranking based on extraction confi-

1http://2016.bionlp-st.org/
2http://www.biocreative.org/
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dence (Cullota and McCallum, 2004). Confidence
typically refers to some kind of scoring – for in-
stance a real number. This brings forth the prob-
lem of confidence estimation. While it is clear
that the confidence of a relation extracted from
biomedical text should be a function of the dif-
ferent sources of evidence on which it relies, it
is unclear (Q1) how to define a global confidence
estimator for biomedical relation extraction, and
(Q2) how to evaluate it.

We hypothesize that relation discovery confi-
dence scores rely on three main kinds of sources:

S1: The (aggregated) confidence scores of the in-
dividual modules of the RE pipeline.

S2: The internal graph structure of the discovered
relations.

S3: Evidence gathered from external knowledge
sources, such as textual evidence or knowl-
edge retrieved or inferred from structured
knowledge sources (biomedical ontologies
and databases).

In this paper we outline a first attempt to answer
questions (Q1) and (Q2) for the domain of protein-
protein relations and events, focusing on approach
S1. The main contributions of this paper are:
(1) We build a distantly supervised RE pipeline
based on BANNER (Leaman and Gonzalez, 2008)
for NER, TEES (Björne and Salakoski, 2015) for
EE and RE, and GNAT and Gnorm (Hacken-
berg et al., 2011; Wei et al., 2015) to link pro-
tein mentions to the STRING protein interaction
database (von Mering et al., 2005), to distantly
determine the truth and falsity of the discovered
typed protein-protein relations. (2) We define
confidence measures for each component of our
pipeline and analyze their impact on relation pre-
diction. (3) Finally, we propose and compare sev-
eral global confidence estimators that aggregate
over these scores.

2 Evidence Sources for Confidence

As said in the introduction, there are main sources
of evidence for biomedical relation discovery and
extraction, namely: prediction confidence (S1),
graph analytics of the discovered relations (S2)
and domain knowledge gathering (S3). We dis-
cuss these in the following.

S1 Modules (e.g., NER or EE systems) in state-
of-the-art systems are typically underpinned by

IL-6 positive STAT-3
regulation

...
...

TIPE2 negative Snail2
regulation

...
...

growth positive WSC
factor regulation domain

...
...

true

interesting

false

Figure 1: Discovered protein-protein (typed) rela-
tions. Notice how the bottom example is plainly
false (it states a regulation among hormones), and
the top one is plainly true (a known regulation).
We assume the one in the middle to represent a
more interesting result, as this fact is not in the
STRING database; however, PubMed/MEDLINE

abstract 28186089 mentions it (“(...) TIPE2 (...)
downregulated (...) Snail2 (...)”).

supervised classifiers that in addition to a pre-
diction, return a probability (e.g., logistic classi-
fiers) or a so-called margin (e.g., linear discrimi-
nant classifiers). We would expect interesting re-
lations whose individual components (e.g., entities
and events) were identified with a higher score,
to stand a higher chance of being true. To this
end, one can employ confidence mixtures (Iversen
et al., 2008; Dawid et al., 1995). Given k ex-
perts, each returning a confidence value ci ∈ R,
i = 1 . . . k, a confidence aggregation is a function
ϕ(·) such that c = ϕ(c1, . . . , ck), where c ∈ R
is the global confidence score. Global confidences
thus aggregate partial confidences assigned to the
partial tasks into which a complex task such as re-
lation discovery can be broken down, to produce
a global score. This method, the one actually de-
scribed in this paper, can be seen as a baseline con-
fidence estimator for biomedical RE.

S2 Graph-based confidence estimation tech-
niques on the other hand rely on the graph-
theoretical structure of extracted or discovered
protein interactions and interaction networks. This
makes sense because RE and EE systems (as the
ones we rely on in this paper) actually return such
graphs and interaction networks. In particular, one
can leverage literature in biomedical and cross-
domain link prediction (Lichtenwalter et al., 2010;
Peng et al., 2017; And et al., 2003). Such tech-
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niques generally aim at predicting new edges (bi-
nary relations) in entity graphs via techniques such
as similarity computation, weighted by properties
such as the centrality or prominence of the con-
nected entities – a measure that can be seen as a
kind of confidence score. One can also exploit
shortest path statistics among detected proteins
(lengths of the paths, number of paths), as, intu-
itively the more relations between two proteins,
the more likely that a specific relation holds.

S3 Last but not least, external knowledge
sources can be used to, alone or in combination
with the previous two methods, derive confidence
estimators for biomedical relation discovery. In-
deed, the STRING database itself describes a net-
work of protein interactions, which can be com-
bined with the interaction network built at dis-
covery and extraction time to gather further, gold
standard graph theoretical evidence for discov-
ered interactions. Another possibility is to use
techniques from the knowledge base population
and enrichment communities such as Wick et al.
(2013), reasoning over domain constraints and on
whether discovered interactions satisfy or violate
them (e.g., the third example in Figure 1 is clearly
false because its arguments are not proteins). Fi-
nally, one can also gather textual evidence, using
techniques borrowed from cognitive systems such
as IBM Watson (Murdock et al., 2012), exploit-
ing PubMed/MEDLINE itself to derive lexical evi-
dence.

3 Experiments

In this section, we describe our confidence esti-
mation experiments for typed protein-protein in-
teraction extraction and discovery. We refer to an
ordered triple rel = (p1, r, p2), where r is an event
or relation type denoting a directed relation (e.g.,
an expression, an inhibition) between proteins p1

and p2 as typed interaction. Note that this task is a
subtask of event extraction (Kim et al., 2009) and
an extension to protein-protein interaction detec-
tion (PPIs), where we want to predict if a protein
pair (in any order) interacts in some way (Choi,
2016; Airola et al., 2008). Our whole pipeline is
depicted in Figure 2.

3.1 Datasets

We used two main datasets in our experiments:
Firstly, a large subset of MEDLINE from May 1992
to May 2017 (PMIDs 1376980 to 28211214). We

ignore languages other than English, and entries
without abstract. We also disregarded abstracts
that do not contain any mentions to protein or
genes. This corpus consists of 40,911,675 tokens
in 1,939,915 abstracts.

Secondly, to distantly evaluate discovered rela-
tions, we use the STRING database (von Mering
et al., 2005), which describes protein-protein rela-
tions. STRING was built by integrating different
databases (including the Gene Ontology (GO) and
the Kyoto Encyclopedia of Genes and Genomes
(KEGG)) and expert-curated text-mining-based
information. STRING covers around 9.6 million
protein entries and 1.3 billion interaction entries of
2031 unique organisms species. We focus on the
subset of human proteins and their interactions.
For network analysis, we use a Neo4j3 graph
database. From STRING, we use 20,458 unique
genes/proteins with 6,013,567 unique typed inter-
actions. They refer to 17,538 EntrezGene IDs.

3.2 Relation Extraction

To extract and discover relations in the MED-
LINE subset, we rely on two well-known state-
of-the-art systems for protein and gene detection
and protein-protein event and relation extraction,
namely BANNER and TEES (Leaman and Gon-
zalez, 2008; Björne and Salakoski, 2015).

BANNER is linear-chain conditional random
field (CRF) NER system, that relies on an array
of pre-trained models, dictionary and gold corpora
for training and prediction. It uses the BIO format
to spot the beginning (B) and constituent words (I)
of a protein mention, and tokens that lie outside
(O) mentions. For this paper, we use a gene detec-
tion model trained on the GNormPlus4gene gold
corpus (Wei et al., 2015), which achieves 83 % F1.
Please note that we run BANNER separately from
TEEs and realign the results in a separate step in
the pipeline (see Figure 2).

TEES is a biomedical RE system, underpinned
by a multiclass support vector machine (SVM).
It relies on BANNER as a subcomponent to de-
tect entities and on the BioNLP 2013 shared
task data to estimate SVMs that detect (1) event
triggering words and their GENIA event types:
regulations, positive regulations, negative regula-
tions, (de)phosphorilations (2) the arguments of

3https://neo4j.com/
4We used this model for consistency with the GN systems

that we describe below, which also use models trained over
this corpus created for the BioCreative II GN shared task.
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Figure 2: Overview of the relation extraction pipeline described in this paper (full pipeline).

Unit Count

PMIDs 11773

Relations 21169

E
le

m
en

ts Proteins 11726
Events 864
Causes 5694
Themes 6032

R
eg

ul
. General 4425

Positive 9830
Negative 6484

Table 1: Event/Relation extraction statistics.
“Events” refers to event trigger words, “Relations”
refers to a relational structure connecting typed
events to cause–theme protein pairs by TEES, as
in Figure 3. All counts are unique counts.

the event or relation: its first argument (cause) and
its second argument (theme). It can also detect
complex event structures, event structures contain-
ing nested events, which we currently disregard.
For each of its predictions, TEES returns a confi-
dence value in the form of an SVM margin (dis-
tance of the trigger or protein to its separating hy-
perplane). TEES achieves 50.74 % F1.

3.3 Relation Normalization

In order to verify if a candidate typed relation oc-
curs in STRING, and to build (silver) standards
for experimental analysis, we define a mapping
from (M1) a protein mention p to a canonical form
(norm(p)), i.e., STRING protein unique identi-
fiers (UIDs), and (M2) a relation/event type r to
a STRING interaction type (ev(r)).

Protein matching Task (M1) is known in
biomedical literature as the protein normalization
task. It has been object of active research since
the early 2000s, giving rise to the BioCreative
Gene Normalization (GN) shared task. In this
paper, we use two state-of-the-art GN systems,
GNAT (Hackenberg et al., 2011), with a perfor-
mance of 86.7 % F1 and GNorm (Wei et al., 2015),
with a performance of 86.4 % F1. We denote this
method by gnN(p), for each GN system N and
protein mention p. GNAT and GNorm normalize
gene/protein mentions to EntrezGene UIDs, which
cover a subset of STRING protein UIDs.

Therefore, in order to increase normalization
recall, we resorted to a disambiguation-based
method. We relied on a STRING RESTful web-
service5 that returns, given a protein mention p,
a list of possible STRING canonical matches, to-
gether with a gloss (a small textual definition),
to build a custom bag-of-words disambiguation
method, that ranks candidates by computing the
cosine similarity of the gloss and the sentence in
which the mention occurs. We denote this method
by lk(p).

This gave rise to a protein normalization
method for protein mentions p summarized by:

normN(p)=


gnN(p), if gnN(p)↓,
lk(p), if gnN(p)↑, lk(p)↓,
NA, if gnN(p)↑, lk(p)↑,

(1)

for N ∈ {GNAT,GNorm}. By ↑ (resp. ↓) we
mean that the method returns no canonical (resp.
returns a canonical) STRING UID for mention p.

5https://string-db.org/cgi/help.pl?
&subpage=api
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Western blot analysis showed that IL-6 increased JKA, STAT3, p-STAT3 and VEGF-C protein levels in the gastric cancer cells. (pmid 26750536)

Positive_regulation

increased:160.61

IL-6 (9606.ENSP00000258743):0.99

cause:6.27

STAT3 (9606.ENSP00000264657):0.87

theme:7.32

Figure 3: Protein-protein relational structure extracted by our pipeline for the first relation from Figure 1.
The leave nodes represent the protein entities, labeled with their STRING UID and BANNER confidence.
The internal node represents the event in which they participate as arguments, labeled with its TEES
recognition confidence. The labels on its outgoing edges represent cause–theme TEES labeling of its
protein arguments, and its TEES confidence. Finally, the root represents the predicted event type.

Note that GNAT and GNorm were tuned for dis-
tinct, though related GN subtasks, namely human
GN and cross species GN, and can produce differ-
ent results. If no normalization method returns a
STRING UID, we consider the canonical protein
for mention p undefined (NA).

Event type matching To deal with (M2), we
relied on the other hand on a simple rule-based
method, that maps the three GENIA event types
returned by TEES GENIA event types to typed
and directed interactions in STRING: protein in-
hibitions, activations and expressions. As a GE-
NIA event type r may correspond to more than
one STRING interaction, we map them to sets of
interactions with

ev(r)=


{inhibitits}, if r = R−,
{expresses,activates}, if r = R+,

{expresses,activates}
∪{inhibits} , if r = R.

(2)

In other words, a TEES relation type r (a regula-
tionR, a negative regulationR−, or a positive reg-
ulation R+) will be mapped to (sets of) STRING
protein inhibitions, expressions and activations.

Relation matching For N ∈ {GNAT,GNorm},
we determine a positive match for a candidate
relation (triple) (p1, r, p2) if for at least a value
t ∈ ev(r) the triple (normN(p1), t, normN(p2)) oc-
curs in the STRING database, negative otherwise.
If normN(pi), for i ∈ {1, 2}, returns no canoni-
cal STRING UID, we discard the candidate alto-
gether. As GNAT and GNorm produce different

normalizer norm. relations positive

GNAT* 11723 973
GNormPlus* 8639 544

Table 2: Silver standards obtained with our nor-
malization methods. By the asterisk we mean the
GN system plus our backoffs. By “norm. rela-
tions” we mean the number of relational structures
for which protein pairs and event types could be
normalized to STRING interaction types and pro-
tein UIDs and by “positive” to those that actually
match interactions in STRING.

results, rather than aggregating results, we gen-
erated two separate silver standards, summarized
by Table 2. Both cover around 1/2 of the original
dataset of candidates and both are skewed towards
negative matches.

3.4 Confidence Estimation

In this subsection we describe our global confi-
dence estimation models. These models aggregate
confidence values returned by the key components
of our pipeline, namely, BANNER and TEES for
proteins, and event/event types, as shown in Fig-
ure 3.

Component-wise confidence For every RE
candidate triple rel = (p1, r, p2) we compute the
following confidence values:

Entity-level (marginal) confidence (BANNER):
we return the so-called product gamma proba-
bility (Cullota and McCallum, 2004) of protein
theme (resp. cause) mentions p starting at position
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t in an abstract with BIO labels (st, . . . , st+k), de-
fined by:

cfγt(p) =
k∏
i=t

γi(si) (3)

(resp., cfγc(p) for cause mentions) where γi(si) =
αi(si) · βi(si)/P (w0, . . . , wi; Λ) is the normal-
ized product of the forward and backward Viterbi
lattice probabilities of label si ∈ {B, I} at po-
sition i, computed from BANNER’s underlying
CRF model Λ, and wi is a word token. This mea-
sure basically characterizes the likelihood that a
given span of MEDLINE tokens is indeed a pro-
tein.

From TEES, we use event-level confidence
based on the margins in the SVM, namely cfev(r),
cfc(p1) and cft(p2) for event (type), cause, and
theme predictions.

In summary, we use five component-wise con-
fidence features for a relation triple rel =
(p1, r, p2), namely, the BANNER product gamma
probability of theme proteins, the TEES margin
value for theme proteins, the BANNER product
gamma probability of cause proteins, the TEES
margin value for cause proteins, and the TEES
margin value for events/event types.

Confidence aggregation Different confidence
sources will have a different impact on their global
aggregate (Iversen et al., 2008; Dawid et al.,
1995). Such impact can be quantified as a weight,
set a priori or a posteriori by training a classifier
over gold (or silver) data and plugging into the ag-
gregates the inferred weights (Liu et al., 2012).
For the experiments described in this paper we
chose the latter, and trained a logistic classifier
over our silver MEDLINE datasets (see the next
subsection for a detailed description), and used
its coefficients ~θ to compute the weights ~we by
(1) measuring their impact on classification de-
viance (see Table 5), and (2) normalizing the val-
ues to a number between 0 and 1. We propose two
fundamentally different methods to aggregate the
separate confidence values to one measure for a
triple rel.

The first method assumes that global confi-
dence is a linear combination of component-
wise confidences for a relation rel (cfm, with
m ∈ {γt, γc, ev, c(p1), t(p2)}), namely, their
(weighted) average:

cfavg =
1
5
·
∑
m

wem · cfm (4)

The second method assumes that each
component-wise confidence is totally inde-
pendent of each other (and hence independence
for each pipeline prediction), and defines global
confidence as a (weighted) product:

cfprod =
∏
m

wem · cfm (5)

We considered also unweighted versions of
the confidence aggregators, by considering unit
weights ~we = (1, 1, 1, 1, 1)T , that assign the same
importance to all component-wise confidences.

Evaluation To evaluate our approach, we re-
lied on a number of different strategies and com-
binations thereof. In particular, we split our two
silver GNAT and GNORM datasets SN, into two
disjoint train TN and test EN subsets. Given how
unbalanced our data is, we, in addition, resam-
pled the training sets by (1) oversampling positive
matches, and (2) undersampling negative matches
until we obtained two balanced training sets SGNAT
and SGNorm each of 2000 relations. For testing, we
kept a set of 1000 unresampled relations each.

To learn the weights ~θ of the confidence aggre-
gation models and hence of component-wise con-
fidences, we trained a logistic classifier over each
of our silver standards:

P (t′=1|~c)=(1 + exp(−
∑
m

θm · cfm))−1 (6)

where t′ = 1 if normalized triple rel is in
STRING, m ∈ {γt, γc, ev, c(p1), t(p2)} and
~c = (cfγt , cfγc , cfev, cfc(p1), cft(p2))T . The pa-
rameters ~θ were learned by maximizing the like-
lihood L(~θ; TN) =

∏
j π(~c(j); ~θ)r

′(j) · (1 −

train dataset T test dataset E F1

gnat train test gnat 0.688
gnorm train test gnat 0.658
gnat train test gnorm 0.766
gnorm train test gnorm 0.733

Table 3: Evaluation of logistic models over the dif-
ferent possible train/test combinations of our vari-
ous silver standards. In bold, the combination with
the best performance. We used the best model
(gnat train) to derive the logistic model (Equa-
tion 6) and the weights used in the weighted con-
fidence aggregation models.
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cfγc > 0.978?

cfγt > 0.997?

cfγc > 0.993?

cfev > 80.959?

n = 961
t/f: 40%/60%

n = 305
t/f: 75%/25%

n = 224
t/f: 65%35%

n = 236
t/f: 40%/60%

n = 274
t/f: 60%/40%

no yes

yesno

yes no

no yes

cfγc > 0.84?

cfγc > 1?

cft > 4.361?

n = 697
t/f: 40%/60%

n = 429
t/f: 38%/62%

n = 246
t/f: 63%/37%

n = 628
t/f : 59%/41%

no yes

yesno

no yes

Figure 4: Right: J48 decision tree for the GNAT silver standard (training set). Left: J48 decision tree for
the GNorm silver standard (training set). Nodes correspond to the component-wise confidence features
defined in Section 3.4. The higher a component-wise confidence, the higher its information gain. Notice
how, in general, we observe a higher gain for TEES confidence scores, plus some contribution coming
from the BANNER confidence of theme proteins. We used for both models a pruning setup whereby we
imposed each tree leave to contain at least 150 relations. In the visualization, the leaves describe also the
distribution of positive (t) and negative (f) matches for each bin, and their size n (triples per bin).

estimator Kendall τ p-value

cfprod (unweig.) 0.041 0.127
cfprod 0.041 0.127
cfavg (unweig.) 0.032 0.210
cfavg 0.050 0.056

Table 4: Correlation-based evaluation of the con-
fidence aggregation models. In bold, the model
with the highest τ value. No test was statistically
significant (although one came close to p = 0.05).
In all cases, this indicates absence of correlation
with linking judgments. Unweighted models were
obtained by considering uniform weights (viz.,
~we = (1, 1, 1, 1, 1)T ).

π(~c(j); ~θ))1−r′(j) via iterative weighted least
squares. We tested each of the two ensuing lo-
gistic models over each of the two test datasets,
and chose the model with the highest F1, as seen
in Table 3.

The confidence estimation models themselves
were evaluated following a methodology pro-
posed by Cullota and McCallum (2004) to evalu-
ate entity-level confidence measures: measure the
correlation between matching judgments and rela-

feature deviance p-value

cfev 6.200 0.013
cft 17.803 2.451 · 10−05

cfc 4.858 0.028
cfγt 2.370 0.124
cfγc 22.667 1.926 · 10−06

Table 5: ANOVA/Analysis of deviance table for
the best logistic model from Table 3 (χ2-test). In
bold, the features with greater impact, both statis-
tically significant with p < 0.01.

tion confidence. Ideally, one would expect a bias
in confidence towards positive matches. In this pa-
per, we considered Kendall’s τ correlation, which
is rank-sensitive and robust to ties.

Last, but not least, we used the logistic model
and the balanced datasets to conduct an ex-
ploratory analysis on the component-wise confi-
dence themselves, to understand which, from all
of our pipeline’s components has a bigger im-
pact on global confidence estimation. To this
end we relied on two separate methodologies: On
the one hand, we conducted an analysis of vari-

61



ance/deviance6 over the (optimal) logistic model’s
features. On the other hand, we inferred two de-
cision trees over our two training sets. Decision
trees rank component-wise confidences cfm, w.r.t.
information gain. We used the J48 decision tree
classifier7, that discretizes continuous variables.

4 Results and Discussion

The results of our confidence aggregation experi-
ments are summarized by Tables 3–5 and Figure 4.

As Table 3 shows, the best logistic model was
obtained over the GNAT training dataset. Inter-
estingly, the best result arose from cross-testing,
when be tested it of the GNorm dataset test corpus.
We conjecture that this might be due to a slightly
better generalization capacity of the GNAT nor-
malizer, as opposed to GNorm.

Regarding our confidence estimation models
however, as Table 4 shows, our analysis returned
no observable correlation (all τ values are close
to zero), but without reaching statistical signifi-
cance. Furthermore, of all estimators, the best (al-
beit by a very small margin) estimator was aver-
age, weighted confidence. We interpret this neg-
ative result to mean that aggregating confidences
alone, disregarding: (1) the performance and/or
confidence of the different normalizations meth-
ods (2) the structural properties of discovered re-
lations, and (3) additional evidence gathered from
external sources is simply not enough to define
meaningful confidence estimators.

Finally, as shown by Table 5 and Figure 4 both
the ANOVA and decision-tree/information gain
analysis point out that the most informative fea-
tures were the BANNER and TEES confidences
for the arguments – the theme (2nd argument) and
the cause (1st argument) – of protein-protein rela-
tional structures. Interestingly event (TEES) con-
fidences do not seem to play a major role. This
however seems consistent with the fact that TEES
models are optimized for recognizing theme-event
and cause-event pairs (by leveraging on the depen-
dency parse tree of the sentence), a harder task
than that of event recognition.

It suggests that while the aggregation of
component-wise confidences is not a good global

6Logistic models are known in statistical literature as gen-
eralized linear models; in such cases rather than analyzing er-
ror variance as for linear models, one analyzes deviance, viz.,
prediction error.

7Weka (http://www.cs.waikato.ac.nz/ml/
weka/) for our logistic and J48 models.

confidence estimator, including them as features
of a more complex model encompassing a wider
array of evidence sources might still be useful. It
also suggests that normalization confidence – the
last step in the pipeline – should be taken into ac-
count as the confidence values coming from pro-
tein recognition have the most impact.

5 Conclusions & Future Work

In this paper we have proposed a confi-
dence estimation methodology for biomedical
protein-protein typed interaction discovery from
PubMed/MEDLINE abstracts. Measuring confi-
dence or trust is important because in this set-
ting not all false positives – interactions that are
not known to occur in biomedical databases –
may be necessarily false. This sorting by con-
fidence should satisfy key criteria, namely that
true matches should be scored high, clearly false
matches low, and “interesting” relations some-
where in between.

To do so, we have proposed a pipeline that
builds upon state-of-the-art protein NER, protein-
protein EE and RE and GN systems, to dis-
cover and distantly evaluate against the STRING
database protein-protein typed interactions. Then,
we have described a number of baseline confi-
dence estimation techniques that aggregate the
confidence prediction scores of the pipeline’s
components.

Our experiments and correlation analysis show
that, while the prediction confidence of modules in
later stages of the pipeline seems to influence more
positive decisions, confidence aggregation is not
enough to define estimation models satisfying the
criteria mentioned. We conjecture that this is due
to the fact that prediction confidence alone does
not provide sufficient evidence to rank relations.
Also, in this work, the confidence of normaliza-
tion was not fully addressed. As further work we
plan to focus on more complex evidence gathering
methods.
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Abstract

We describe a method which extracts As-
sociation Rules from texts in order to
recognise verbalisations of risk factors.
Usually some basic vocabulary about risk
factors is known but medical conditions
are expressed in clinical narratives with
much higher variety. We propose an ap-
proach for data-driven learning of spe-
cialised medical vocabulary which, once
collected, enables early alerting of po-
tentially affected patients. The method
is illustrated by experimens with clinical
records of patients with Chronic Obstruc-
tive Pulmonary Disease (COPD) and co-
morbidity of CORD, Diabetes Melitus and
Schizophrenia. Our input data come from
the Bulgarian Diabetic Register, which is
built using a pseudonymised collection of
outpatient records for about 500,000 di-
abetic patients. The generated Associa-
tion Rules for CORD are analysed in the
context of demographic, gender, and age
information. Valuable anounts of mean-
ingful words, signalling risk factors, are
discovered with high precision and confi-
dence.

1 Introduction

Chronic diseases like Chronic Obstructive Pul-
monary Disease (COPD) and Diabetes Mellitus
are long-lasting disorders with effects that come
with time. They are the result of a combination
of genetic, physiological, environmental and be-
haviours factors, and kill over 40 million people
each year, equivalent to 70% of all deaths glob-
ally1. Prevention is focused on reducing the risk

1 World Health Organisation (WHO) factsheets:
http://www.who.int/mediacentre/factsheets/fs355/en/

factors associated with these diseases. Therefore,
establishing the risk rates and early recognition
of potential danger will help to decrease the role
of the common modifiable risk factors. In the
age of big data and given the growing amount of
patient-related texts, we believe that Data Mining
and Text Mining are key technologies which might
help by providing discovery of hidden interdepen-
dencies among words (lexical expressions of indi-
cators and assessment of risks) in patient records.

In this paper we demonstrate how automatic
analysis of clinical narratives in Bulgarian lan-
guage allows to identify verbal expressions of
risks for patients. Our input data come from the
Bulgarian Diabetic Register, which is built using
a pseudonymised collection of outpatient records
for about 500,000 diabetic patients treated in the
period 2010-2016 (Tcharaktchiev et al., 2015).
Together with the structured information, the out-
patient records contain free texts discussing the
patient case history, status, risk factors, treatment
etc. Our tools process both structured data and free
text of outpatient records in order to extract Asso-
ciation Rules for COPD risk factors. Since Dia-
betes Melitus and Schizophrenia are also closely
related, we study their comorbidity and the risk
factors for COPD in patients with Diabetes Meli-
tus and Schizophrenia. By applying unsupervised
Data Mining techniques we try to overcome the
lack of linguistic and ontological resources that
can support successful NLP analysis of clinical
narratives in Bulgarian. Thus we demonstrate how
new lexical resources can be generated, to be used
for better analysis of clinical texts.

The paper is structured as follows. Section 2
overviews related work with focus on the techno-
logical solutions. Section 3 presents the method
we use, section 4 – the experiments and results.
Section 5 contains the conclusion and discusses
future work.
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2 Related Work

Many advanced approaches apply Natural Lan-
guage Processing (NLP) as a first step in mining
entities from free texts and use the latter as in-
put to subsequent biomedical research or decision
making tasks. Incorporating NLP has advantages:
it systematically links several terms to a concept
using databases that standardise health terminolo-
gies; avoids manual work for searching term varia-
tions; increases the number of patients in the con-
sidered cohorts and thus increases the sensitivity
of the recognition (Liao et al., 2015). A recent re-
view lists 71 clinical NLP systems, which process
free text and generate structured output, in order to
address a wide variety of important clinical and re-
search tasks (Kreimeyer et al., 2017). Significant
progress has been made in algorithm development
and resource construction since 2000 (Luo et al.,
2017). Open challenges remain e.g. extraction of
temporal information, normalisation of concepts
to standard terminologies, interpretation etc. De-
spite the limitations the conclusion is that today
NLP engines are powerful components ready for
integration in medical text processing and – due
to expected improvements in the near future, e.g.
more accurate mappings of terms to medical con-
cepts – the importance of NLP as a valuable sup-
porting technology will grow (Liao et al., 2015).
Here we briefly discuss major text analysis tech-
nologies that are applied in biomedical domain.

Data mining (DM) is actively used in the field
since the middle of 1990’s. It employs explorative
algorithms to identify meaningful data patterns
with acceptable computational efficiency and un-
cover new biomedical and healthcare knowledge
for clinical and administrative decision making.
Furthermore it can generate testable evidence-
based medical hypotheses from large experimental
data, clinical databases, and/or biomedical litera-
ture. Today DM is applied for a variety of tasks
operating on biomedical entities extracted from
free texts. For instance (Luo et al., 2017) states
that NLP is a useful tool for extracting information
related to adverse drug events (ADE) and phar-
maceutical products from electronic health record
(EHR) narratives. Since 2012, DM enables suc-
cessful automation of the ADE discovery so the
“NLP-based ADE detection” (as the authors call
it) can be soon integrated in practical systems.
Moreover, the DM capacity for treatment of het-
erogeneous data sources is increasingly adopted.

(Stubbs et al., 2015) present an overview of the
2014 i2b2/UTHealth NLP shared task focused on
identifying medical risk factors related to Coro-
nary Artery Disease (CAD) in the narratives of
longitudinal medical records of diabetic patients.
Twenty teams participated in this track, and sub-
mitted 49 system runs for evaluation. The most
successful system used a combination of external
lexicons, hand-written rules and Support Vector
Machines (a machine learning method). Other ma-
chine learning techniques n use were Conditional
Random Fields and ensembles of classifiers (CRF,
Naïve Bayes, and Maximum Entropy). With six
of the top 10 teams achieving F1 scores over 0.90,
and all 10 achieving F1 scores over 0.87, the au-
thors conclude that identification of risk factors
and their progression over time is within the reach
of present automated systems. These examples
show that today DM is a key technology for the
successful NLP-based medical applications.

Text mining (TM) aims at the delivering of
meaningful information from texts, e.g. structur-
ing text units into entities and relationships among
them, via NLP applications for shallow analysis.
A widely used system of this type is the open-
source NLP tool for information extraction from
EHR cTAKES (clinical Text Analysis and Knowl-
edge Extraction System)2. Another open source
system is HITEx (Health Information Text Ex-
traction) which extracts some variables of inter-
est from narrative text (Goryachev et al., 2006).
We mention here two more examples how text
mining delivers useful information about risk fac-
tors and adverse drug events. In (Jonnagaddala
et al., 2015) the authors present a system that dis-
covers in free text EHRs information about age,
gender, total cholesterol (or low-density lipopro-
teins cholesterol LDL-C), high-density lipopro-
teins cholesterol (HDL-C), blood pressure, dia-
betes history and smoking history for a cohort
of 164 diabetic patients. After that the Framing-
ham risk score is calculated to predict the coro-
nary artery disease (CAD) for these patients. The
performance of the text extraction system is reli-
able, however missing data remain a challenging
issue. Over 40% of patients in the final cohort are
at high risk of CAD and over 50% of the popu-
lation fitted in the moderate category. The main
limitation was the lack of a systematic evaluation
of the developed text mining system. In (Harpaz

2Official site http://ctakes.apache.org/
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et al., 2014) the authors state that TM is suffi-
ciently mature to be applied for the extraction of
useful information concerning ADEs from multi-
ple textual sources. Currently such information is
collected by manual expert analysis of clinical trial
notes and spontaneous reports, and the review of
biomedical literature; but progress depends on a
comprehensive approach that examines a diverse
set of potentially complementing data sources in-
cluding EHRs. Posting in social media are another
source of information about ADEs: 2% of patients
and 6% of caregivers share their experiences on-
line, and 18% of all internet users, 31% of all pa-
tients with chronic conditions, and 38% of care-
givers look at online drug reviews3. Despite the
challenges, a large body of research has demon-
strated that the existing TM tools are capable to
extract useful safety-related information from the
aforementioned textual sources.

NER and rule-based approaches evolved dur-
ing the last decades from research prototypes to re-
liable NLP technologies. Mature (and constantly
evolving) systems appeared for processing En-
glish clinical texts, e.g. KnowledgeMap Concept
Identifier which processes clinical notes and re-
turns CUIs (Concept Unique Identifiers) for the
recognized UMLS terms (Denny et al., 2003) as
well as NegEx, a tool for identification and in-
terpretation of negation in English texts (Chap-
man et al., 2001), (Gindl, 2006). Identification
of temporal events is a hot topic in biomedical
NLP. In (Chang et al., 2015) it is proposed to
recognise first all temporal expressions and then,
after building a temporal model of the context,
to assign the corresponding time attributes for all
recognised concepts with respect to the creation
time of the records. Disease mentions are identi-
fied after that, along with their corresponding risk
factors and medications. (Chang et al., 2015)
shows the progress in processing named entities
which represent temporal information. Recently,
with the DM development, classical rule-based
systems like NegEx can be outperformed by statis-
tical methods (Uzuner et al., 2009); on the other
hand the rule-based methods prove to be good in
the production of annotated resources and when
writing rules that emulate the knowledge of a do-
main expert (e.g. in ADE discovery).

3Pew Research Center, The Social Life of Health Infor-
mation, 2011: http://www.pewinternet.org/2011/05/12/the-
social-life-of-health-information-2011/

3 Methods

Our approach (Fig. 1) has five main phases: (i)
Structured information processing of the ORs in
the repository; (ii) Risk Factors Association Rules
generation from the training set; (iii) Preprocess-
ing of the test sets; (iv) Risk Factors Association
Rules matching on the test sets; (v) Structured in-
formation processing of the patients in risk.

3.1 Structured Data Analysis Methods

The Diabetes Register contains pseudoanonymous
Outpatient Records (OR) in XML format. Most
data necessary for the health management are
structured in fields with XML tags which present
the Patient ID, the code of doctors’ medical spe-
cialty, region of practice, Date/Time and ID of
the OR. Several free-text fields contain impor-
tant explanations about the patient: “Anamnesis”,
“Status”, “Clinical examinations” and “Therapy”.
There are also several XML tags for the main diag-
nose and additional diagnoses with their codes ac-
cording to the International Classification of Dis-
eases, 10th Revision (ICD-10)4. Each OR con-
tains a main diagnosis with ICD-10 code and ICD-
10 codes of up to 4 additional disorders, i.e. in
total from 1 to 5 ICD-10 codes.

The study of disorder comorbidities plays an
important role in detection and prevention of pa-
tients at risk. Chronic diseases constitute a major
cause of mortality according to the World Health
Organization (WHO) reports and their study is of
higher importance for healthcare. For discovering
frequent patterns of chronic diseases we use ret-
rospective analysis of population data, by filtering
events with common properties and similar signif-
icance. One of the major approaches to pattern
search is frequent pattern mining (FPM) viewing
the events (objects) as unordered sets. This pre-
liminary work was done over outpatient records
(ORs) of patients with primary diagnose Diabetes
Melitus Type 2 (ICD-10 code E11) (withdrawn
Self-reference). We extracted relatively high num-
ber of frequent patterns containing different men-
tal disorders – ICD-10 codes F00-F99. This re-
sult motivated us to process collection for patients
with Schizophrenia (ICD-10 code F20). The study
collection SD of patients who suffer from both
Schizophrenia and Diabetes Melitus Type 2 was

4 International Classification of Diseases
and Related Health Problems 10th Revision.
http://apps.who.int/classifications/icd10/browse/2015/en
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Figure 1: Identification of patients at risk

automatically extracted from the Diabetes Regis-
ter and contains all ORs for these patient in the pe-
riod 2012-2014 - approx. 200,000 ORs for 4,080
patients.

Let H be a chronic disease and there exist a
frequent itemset F of chronic diseases such that
{H,E11, F20} ⊆ F . The study collection SD is
split into two subsets SH and ST. The collection
SH contains ORs of all patients in SD that also
have diagnosis H. We will call the set SH a train-
ing set. The set ST is formed as ST = SD−SH .
We will call the set ST a test set.

3.2 Risk Factors Association Rules
Generation

Text Analysis has three main phases: Itemsets
Generation which converts the text documents
into itemsets, Association Rules Generation based
on frequent pattern mining (FPM) techniques and
elicitation of ARs, and Risk Factors Association
Rules Filtering that filters rules by using keywords
(Fig. 2).

The system processes input texts in unicode
format and is language independent in principle
(stemming and stopword filtering can be replaced
with modules for another language).

3.2.1 Itemsets Generation
Let SH be the training set. We extract for each
OR its parts in XML tags for Anamnesis (Patient
History) and Status and form separate collections
of ORs Anamnesis texts only - SHa, and ORs Sta-
tus texts only - SHh correspondingly. We process
separately the collections SHa and SHh.

Let S be one collection. Each text in S is turned
to a sequence of word stems in their original order,

using blank spaces and punctuation delimiters as
tokenization separators. Stop words and numbers
may be essential for some patterns so they are pre-
served and generalised - replaced by the constants
STOP and NUM correspondingly. After this step
the punctuation is eliminated. Then we use hash-
ing and substitute each word with an unique num-
ber. In addition some compression and sorting is
applied. This is necessary to speed up the frequent
patterns mining process.

The vocabulary used in all documents of S will
be called items W = {w1, w2, ..., wn}. For the
collection S we extract the set of all different doc-
uments P = {p1, p2, ..., pN}, where pi ⊆ W .
This set corresponds to transactions; the associ-
ated unique transaction identifiers (tids) shall be
called pids (patient identifiers). Each patient in-
teraction with a doctor is viewed as a single docu-
ment in P.

3.2.2 Association Rules Generation
The ORs are written in telegraphic style with
phrases rather than full sentences. Usually the
ORs list attribute-value (A-V) pairs - anatomical
organ/system and its status/condition. Attribute
names contain phrases and abbreviations in Cyril-
lic and Latin. Values can be long descriptions in
case of status complications. The order of A-V
pairs can vary and parts of the value descriptions
can surround the attributes. It is also possible that
some attributes share the same value. Sample on-
figurations are shown below.

A1V1, ..., AnVn|V1A1, ..., VnAn

V1...VkAVk+1...Vn

A1, A2, ..., AnV |V A1, A2, ..., An.
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Figure 2: Risk Factors Association Rules Generation

Thus, when searching for frequent patterns,
we consider a window of more than 10-12 words
around each attribute. The rich terminology and
flexible syntax structure hinder the application
of traditional methods for extraction of collo-
cations with gaps. Usual collocation extraction
approaches would rather find the OR clishe
phrases as collocations with highest frequency,
moreover many A-V pairs would be erroneously
considered as n-grams. Some FPs are given below.

E.g.: Positive examples:
общо състояние (general condition)
щитовидна жлеза (thyroid gland)
Negative examples:
удължен експириум (prolonged expiratory time)
има кашлица (has a cough)

Therefore we treat documents as bag of words
rather than sequences, they are transformed to
itemsets with single word occurrences only.

Given a set of pids S, support of an itemset I
is the number of pids in S that contain I . We de-
note it as supp(I). We define a threshold called
minsup (minimum support). Frequent itemset (FI)
I is one with at least minimum support count, i.e.
supp(I) ≥ minsup. The task of FPM of S is to
find all possible frequent itemsets in S.

Most FPM algorithms generate all possible fre-
quent patterns (FPs). The search space grows ex-
ponentially with the size of W . Summarised infor-
mation for data relations can be extracted as max-
imal frequent itemsets (MFI). The condensed in-
formation not only accelerates the process, reduc-
ing redundancy, but also decreases significantly
the number of frequent patterns for post-analysis.

An implication in the form I ⇒ J is called as-
sociation rule, where I ⊂ W, J ⊂ W, I ∩ J = ∅.
I is called antecedent and J is called consequent.
Support of a rule is the number of pids in S that
contain I ∪ J , i.e.

sup(I ⇒ J) = sup(I ∪ J) = P (I ∪ J).

If C% of patient documents in S that contain I,
contain also J, then the association rule I ⇒ J
holds with confidence C in S, i.e. this is the con-
dition probability

conf(I ⇒ J) = P (J |I) = sup(I∪J)
sup(I) .

The task of ARs mining in collection S is to
generate all ARs with confidence above the user
defined confidence (minconf ) and support above
user defined support (minsup). Rules that sat-
isfy both a minsup and minconf are called strong.
However, even for reasonable values of minsup
and minconf, big datasets yield huge amounts of
strong ARs. So we use an additional filter called
lift that is defined as the ratio of the confidence of
the rule and the confidence of its consequent.

lift(I ⇒ J) = P (I∪J)
P (I)P (J) .

The lift represents the strenght of the relation
between the consequent and its antecedent. Lift
value < 1 indicates independence between them.
Lift value > 1 means that the antecedent and con-
sequent appear together more often than expected,
i.e. are correlated. Such rules are potentially use-
full for predicting the consequent in new sets.

For ARs generation we use algorithms for min-
ing all association rules with the lift measure in a
transaction database (Agrawal and Srikant, 1994)
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with implementation at SPMF5. For experiments
is used algorithm for All Association Rule with
FPGrowth with lift (Han et al., 2004). Let the
two sets of generated ARs for SHa and SHh corre-
spondingly be ARa and ARh.

3.2.3 Risk Factors Association Rules
Filtering

In order to identify ARs for risk factors we
use small lexicon with some keywords - K =
{k1, ..., km}. We convert back the hashed items
from the ARs into words and obtain set ARW. For
the two sets of ARs - ARa and ARh we have ARaW
and ARhW. Thus the results ARs contain words.
We filter those ARs that contain some of the key-
words from the lexicon by projection.

ARaWk = {I ⇒ J |I ⇒ J ∈ ARaW ∧ ∃k ∈
K, k ∈ I ∨ k ∈ J}

ARhWk = {I ⇒ J |I ⇒ J ∈ ARhW ∧ ∃k ∈
K, k ∈ I ∨ k ∈ J}

3.3 Preprocessing of the test sets

Let ST be the test set of ORs. All Anamnesis (Pa-
tient History) sections formed the text collection
STa, and all ORs Status texts - the collection STh.
We process STa and STh separately. Similarly to
the processing of the training set SH, we apply for
STa and STh the first text analysis step - Itemsets
Generation - but exclude the last procedures for
hashing, compression and sorting.

3.4 Risk Factors Association Rules matching
on the test sets

We match the corresponding type ARs to the test
collections, i.e. ARs generated from the Anamne-
sis texts are mapped onto test collections that con-
tain pids for Anamnesis, and the ARs generated
from the Status parts of the ORs are mapped onto
test collections that contain pids for Status. The
result sets contain pids of patients at potential risk
of chronic disease H.

RHak = {p|p ∈ STa, I ⇒ J ∈ ARaWk, I ⊆
p ∧ J ⊆ p}

RHhk = {p|p ∈ STh, I ⇒ J ∈ ARhWk, I ⊆
p ∧ J ⊆ p}

5http://www.philippe-fournier-
viger.com/spmf/index.php?link=algorithms.php

3.5 Structured information processing for
patients at risk

Presence of some symptoms is a necessary but not
sufficient condition for risk of chronic disease H.
Some additional factors need further investigation,
like related diagnosis with similar symptoms. We
also need to study the other current diagnosis of
the patient, to take into account age, gender, de-
mographic information, etc. That’s why we collect
for each patient all pids from RHak and RHhk

and the associated structured information with the
corresponding ORs from the test ST.

4 Experiments and Results

The chronic disease H that we investigate here is
COPD (ICD-10 code J44), i.e. H=J44. The aver-
age prevalence of COPD in Bulgaria is 3.197% for
2014 among all Bulgarian citizens (Fig. 3). The
average prevalence of both Schizophrenia (ICD-
10 code F20) and Diabetes Melitus Type 2 (ICD-
10 code E11) in Bulgaria is 0.688% for 2014
among all Bulgarian citizens (Fig. 4). However
for 2014 the average prevalence of COPD among
patients that suffer by both Schizophrenia and Di-
abetes Melitus Type 2 is relatively higher 5.576%
than the average for the country (Fig. 5).

Some of the typical characteristics of COPD
are: starting at middle age; symptoms develop
slowly; prolonged smoking is a main reason; pa-
tients experience dyspnoea during physical ef-
forts and significant irreversible airflow limita-
tion. Thus in primary interest are ORs written
by specialists: in Otolaryngology (S14), Pulmol-
ogy (S19) and Endocrinology (S05). But we try
to identify patients at risk, and probably some of
them had no visits and consultations yet to such
specialists. So we consider also collection of ORs
for visits to general practitioners (GP) (S00).

We have 4 text collections with ORs (Table
2): GP (S00), Endocrinology(S05), Otolaryngol-
ogy (S14), and Pulmology (S19). We split these
collections into training and test sets, depending
on whether they are ORs for patients with H=J44
or not. In addition we split them into two "Anam-
nesis" and "Status" sections of the ORs. Both sec-
tions are available for each patients so the train-
ing sets SHa and SHh contain the same number of
pids. This is valid also for the test set STa and STh
for each collection.

We can observe that for SHh (Table 3) the
number of generated FPI and ARs is significantly
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Figure 3: Prevalence of COPD (J44) in Bulgaria,
2014

Figure 4: Prevalence of Schizophrenia (F20) and
Diabetes Melitus Type 2 (E11) in Bulgaria, 2014

Figure 5: Prevalence of COPD (J44) among pa-
tients with both Schizophrenia (F20) and Diabetes
Melitus Type 2 (E11) in Bulgaria, 2014

Year 2012 2013 2014 Total
patients 2,929 3,093 3,217 4,080

S00 45,402 46,238 51,894 143,534
S05 2,854 2,900 3,071 8,825
S14 368 351 396 1,115
S19 252 267 344 863

Table 1: Collection SD for patients with both
Schizophrenia and Diabetes Melitus Type 2

Year 2012 2013 2014 Total
patients 144 166 179 293

S00 3,783 3,796 4,208 11,787
S05 253 273 262 788
S14 45 47 64 156
S19 158 172 202 532

Table 2: Training sets SHa and SHh

Set ARa FPI minsup ARWaK

S00a 647 1,713 0.01 10
S05a 1,695,130 23,677 0.03 0
S14a 82,802 2,499 0.03 34
S19a 278,379 5,431 0.03 249,221

Table 3: Generated Association Rules for Anam-
nesis with minconf = 1.0 and minlift = 1.05

Set ARh FPI minsup ARWhK

S00h 1,888,641 286,357 0.08 2
S05h 1,779,462 101,320 0.07 1,264
S14h 1,818 649 0.04 0
S19h 113,718 26,341 0.04 98,185

Table 4: Generated Association Rules for Status
with minconf = 1.0 and minlift = 1.1

higher than for SHa (Table 4) even for higher
minsup values, because the text in Status section
is more coherent and contrain less variety of syn-
tax structures. However the projection of these
ARs to the keywords set K shrinks all the ARs sets
in some cases to the ground. And it is not surprice
that the majority of the filtered ARs comes from
S19a and S19h - ORs from Pulmology.

The keywords for symphtoms of J44 are:
K = {тежест, задух, кашлица, хрипове, храчки,
умора, уморяемост физическа, сърцебиене, труд-
но, експекторация, експириум} (Weight, Breathlessness,
Cough, Wheezing, Sputum, Fatigue, Tiredness, Physical, Pal-
pitations, Difficult, Expectoration, Expiratory).

Some generated ARs for COPD risk factors are:
умора експекторац => кашлиц SUP: 17 LIFT: 1.60
(Fatigue Expectoration => Cough)
храчки лесна умора => кашлиц SUP: 17 LIFT: 1.60
(Sputum Easy Fatigue => Cough)
храчки експекторац => задух SUP: 20 LIFT: 2.30
(Sputum Expectoration => Breathlessness)
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Patients with potential risk of COPD are identi-
fied after matching the filtered rules of AWaK and
AWhK to STa and STh correspondingly. The total
number of ARs matches over the test sets of ORs
is shown on (Table 5) and (Table 6) respectively.

ARWak ARW00ak ARW14ak ARW19ak

S00Ta 144 1,069 1,154
S05Ta 4 52 96
S14Ta 0 420 0
S19Ta 0 86 464

ORs 20 601 1,018

Table 5: COPD risk factors found in Anamnesis

ARWak ARW00hk ARW05hk ARW19hk

S00Th 0 3,086,665 829,995
S05Th 0 347,490 125,479
S14Th 0 0 0
S19Th 0 7,806 425,769

ORs 0 33,545 73,485

Table 6: COPD risk factors found in Status

In the following OR excerpt, items from the AR
antecedent are highlighted in light blue color and
the predicted consequent items are highlighted in
pink color.
Association Rule: SUP: 7 LIFT: 9.176
оплаква дишан => затрудн

STOP оплаква STOP честа дразнещ суха кашлиц
STOP белезникав храчки задух затрудн дишан
заморяван отпадналост STOP главоболи
(STOP complain STOP frequent irritating dry cough

STOP whitish sputum dyspnoea difficult breath tiredness
fainting STOP headache)

Patients that needs to be alerted for COPD risk
factors are selected after analyses of some struc-
tured information in the ORs: age, gender, demo-
graphic region, etc.

COPD develops slowly and usually patient with
age above 40s are at a higher risk . Risks are
gender specific as well due to the prevalence of
male (6.17%) vs. female (5.25%) patients. De-
mographic information helps to identify patient
who live in regions with pollution, close to ther-
mal power stations, etc. On Fig. 5 we can see
that such regions in Bulgaria are around the town
of Sliven (15.91%), Vidin (8.70%) and Vratsa
(10.26%) in comparison with the average preva-
lence of COPD in the collection 5.576%. Another
risk factor that needs further analysis is the patient
smoking status because smoking is one of the ma-
jor causes for COPD development. Some diag-

noses related to the CORD symptoms are the fol-
lowing (with the corresponding ICD-10 codes in
the parenthesis): Asthma(J45), Status asthmaticus
(J46), Congestive heart failure (I50.0), Bronchiec-
tasis (J47), Tuberculosis (A15-A19), Bronchitis
(J40-J42), Acute bronchiolitis (J20-J22), Emphy-
sema (J43). So when planning alerts for patients
at risk, one should check whether he/she has some
of the diagnosis listed above and exclude those pa-
tient from the set RH for patients with risk alert.

5 Conclusion and Further Work

Here we show how to construct in a reliable man-
ner a "could" of words signalling risks. This is
important for a language like Bulgarian where
no electornic linguistics resources of medical ter-
minology are available. The existing very large
archive of pseudonymised ORs, a nation-wide col-
lection for 2010-2016, enables unique opportuni-
ties to acquire automatically lexical resources or-
ganised around names of diseases, medical condi-
tions and/or specific groups of patients. The care-
ful pre-selection of training corpora facilitates the
explication of association rules; in this experiment
we are aware about the comorbidity of CORD and
Schizophrenia therefore we extract ORs for a co-
hort of patients which contains more CORD cases.

Despite the over-generation of ARs, the top
rules are a reliable source of information which is
easy to filter.

Another important achievement is the sketch of
a clear procedure for discovery of patients at risk
and issuing alerts to the healthcare authorities who
need to take care about their implementation.

Future work involves processing of more com-
plex linguistic constructions (negation) and con-
sidering typical risk factors (smoking).
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Abstract

When patients take more than one med-
ication, they may be at risk of drug in-
teractions, which means that a given drug
can cause unexpected effects when taken
in combination with other drugs. Similar
effects may occur when drugs are taken to-
gether with some food or beverages. For
instance, grapefruit has interactions with
several drugs, because its active ingredi-
ents inhibit enzymes involved in the drugs
metabolism and can then cause an exces-
sive dosage of these drugs. Yet, informa-
tion on food/drug interactions is poorly re-
searched. The current research is mainly
provided by the medical domain and a
very tentative work is provided by com-
puter sciences and NLP domains. One
factor that motivates the research is re-
lated to the availability of the annotated
corpora and the reference data. The pur-
pose of our work is to describe the ratio-
nale and approach for creation and anno-
tation of scientific corpus with informa-
tion on food/drug interactions. This cor-
pus contains 639 MEDLINE citations (ti-
tles and abstracts), corresponding to 5,752
sentences. It is manually annotated by two
experts. The corpus is named POMELO.
This annotated corpus will be made avail-
able for the research purposes.

1 Introduction

Prescribed medicines depend on initial marketing
authorization to guarantee the security of patients.
Nevertheless, medicines can cause adverse drug
reactions (ADRs) discovered during clinical trials,
but usually later, in a pharmacovigilance context,

while drugs are administered to patients (Aagaard
and Hansen, 2013; Brahma et al., 2013; Cote and
Choy, 2013; Yom-Tov and Gabrilovich, 2013; Wei
et al., 2013). For this reason, prescription and in-
take of drugs is controlled all over their marketing
and use by patients.

When patients take more than one medication,
they may be at risk of drug interactions, which
means that a given drug can cause unexpected ef-
fects when taken in combination with other drugs.
For instance, sedative and pain medication cause
an important drowsiness in patients, while other
drugs (benzylpenicillin and heparin) interact be-
tween them and cannot be placed in the same sy-
ringe. Most drugs are not concerned by such ef-
fects. Yet, when such adverse events happen, they
may have negative and serious effects on patients
and their health. Hence, it is important to know the
possible interactions between drugs and to clearly
indicate them to patients and to medical staff. For
this reason, for several years now, automatic ex-
traction of drug-drug interactions is heavily re-
searched in order to provide an updated and timely
information on known interactions between drugs
or between their active principles. In the same
way, it becomes possible to discover potential ad-
verse effects and adverse reactions (Aronson and
Ferner, 2005) of these drugs.

A different but yet related situation occurs when
drugs are taken together with certain food or bev-
erages. Food and drug interaction may also lead
to negative effects on health and well-being of pa-
tients. For instance, grapefruit has interactions
with several drugs, because its active ingredients
inhibit enzymes involved in the drugs metabolism
and can then cause an excessive dosage of these
drugs (Duke Med Health News, 2013; Greenblatt
and Derendorf, 2013). Due to the difficulty to de-
tect them, because patients usually do not remem-
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ber the food they have taken, and to their com-
plexity, such situations are studied less frequently,
even if they are important for patients and for the
medical care process. Our main interest is to study
food-drug interactions and to automatically detect
them in scientific literature.

Most information on food/drug interactions is
recorded in unstructured sources, such as scien-
tific articles and some knowledge bases, like Drug-
Bank1 (Wishart et al., 2006), or possibly in dis-
cussion fora which provide patient point of view
of adverse events. Yet, this information remains
poor. For instance, DrugBank records textual in-
formation about food/drug interactions for less
than 10% of drugs, and it mainly provides infor-
mation on optimal drug intake time.

Regarding these observations, our objective is
to use and mine scientific bibliographical data in
order to describe interactions that exist between
drugs and food, and that may lead to adverse ef-
fects. To achieve this goal, our first step is to de-
sign and to annotate a dataset of MEDLINE ab-
stracts. This is the purpose of the work presented
in this paper.

In what follows, we first present some related
work (section 2). We then present the annotation
scheme (section 3), and describe the corpus defi-
nition and the annotation process (sections 4 and
5). Finally, we present our results (section 6), and
discuss our work and conclude with future orien-
tations (section 7).

2 Related work

We present two kinds of works: those performed
by pharmacists and pharmacovigilance experts on
drug/drug interactions (DDI) and food/drug inter-
actions (FDI) in medical domain, and those per-
formed by computer scientists on information ex-
traction.

2.1 Medical domain

In has been defined that interactions can occur in
different ways. The interactions presented here
have been defined for the DDI cases, but they show
very similar effects when the FDIs occur. Hence,
two drugs given together may act at the same or
similar receptor, which can lead to a greater or
to a decreased effect of either drug. Another sit-
uation is when one drug is affected by action of

1http://www.drugbank.ca/

another drug. In this case, their absorption, distri-
bution, metabolism or excretion (commonly called
ADME) are involved (Doogue and Polasek, 2013).
We give here some examples of DDIs found on-
line2:

• Absorption. Some drugs can alter the ab-
sorption of another drug. For example, cal-
cium can block absorption of some medica-
tions. Hence, the HIV treatment dolutegravir
(Tivicay) should not be taken at the same time
as e.g. calcium carbonate (Tums, Maalox),
because it can lower the amount of dolute-
gravir absorbed and reduce its effectiveness
in treating HIV infection. For the same rea-
son, many drugs cannot be taken with milk
or dairy products because they will bind with
the calcium;

• Distribution. Protein-binding interactions
can occur when highly protein-bound drugs
compete for a limited number of binding
sites. One example is between fenofibric acid
(Trilipix), used to lower cholesterol in the
blood, and warfarin, a common blood thin-
ner to help prevent clots. Fenofibric acid can
increase the effects of warfarin and cause the
bleeding in patient;

• Metabolism. Drugs are usually eliminated
from the body further to their changes
through metabolism. Enzymes in the liver,
usually the CYP450 enzymes, are often re-
sponsible for breaking down drugs and for
their elimination from the body. However,
enzyme levels may go up or down and affect
how drugs are broken down. For example,
using diltiazem, a blood pressure medication,
with simvastatin, a medicine to lower choles-
terol, may elevate the blood levels and cause
side effects due to simvastatin. Indeed, dil-
tiazem can block the CYP450 3A4 enzymes
needed for the breakdown of simvastatin, in
which case, high blood levels of simvastatin
can lead to serious liver and muscle side ef-
fects. Another example is when grapefruit
affects the action of the CYP3A4 enzyme,
thus also affecting the intake of several drugs
(Duke Med Health News, 2013; Greenblatt
and Derendorf, 2013);

2https://www.drugs.com/drug_
interactions.html
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• Excretion. Some nonsteroidal antiinflamma-
tory drugs (NSAIDs) (e.g. indomethacin),
may lower kidney function and affect the ex-
cretion of lithium, a drug used for bipolar
disorder, in which case its action can be in-
creased.

From these examples, we can highlight several
points related to the intake of drugs:

• when several medications are taken together,
patients should define the best way to take
them (e.g. time, dose) with their doctor;

• DDIs and FDIs may show similar action pat-
terns because they may contains same or sim-
ilar active principles, like shown above with
the calcium intake, present in drugs and in di-
ary products, or with grapefruit and diltiazem
changing the behavior of some enzymes;

• the interaction can follow several patterns:
action of a given medication can be de-
creased, increased or cause side effects which
are usually not observed.

2.2 Computer Sciences
As noticed above, it is important to research the
issues related to DDIs and FDIs. Concerning the
DDIs, and globally the ADRs (Adverse Drug Re-
actions), their reporting is extremely low. For in-
stance, in France, 96% of the ADRs are simply not
reported (Moride et al., 1997; Lacoste-Roussillon
et al., 2001). As for the FDIs, they are even more
difficult to identify for several reasons: the large
number of possible interactions, the difficulty of
describing meals in a standard ADR reporting
form, the difficulty to remember exactly which
food has been taken at a given moment, and prob-
ably also for sociological reasons because drugs
and pathology are connected unconsciously and
associated with negative feelings, whereas food
is rather an indication of good health. For these
reasons, it is important to provide automatic NLP
(Natural Language Processing) methods for min-
ing available sources of information, like MED-
LINE bibliographical database3.

Several works have been done on automatic
extraction of DDIs (Duda et al., 2005; Björne
et al., 2013; Ayvaz et al., 2015; Kim et al., 2015;
Kolchinsky et al., 2015; Liu et al., 2016; Schnei-
der and Boyce, 2016). In most cases, supervised

3https://www.ncbi.nlm.nih.gov/pubmed

categorization methods are exploited for the detec-
tion of entities and of their interactions. This ex-
plains why the majority of these works are part of
the NLP challenges, like *SEM (Segura-Bedmar
et al., 2013) for DDI extraction and BIOCRE-
ATIVE (Krallinger et al., 2009) for PPI (Pro-
tein–Protein Interaction) extraction. Indeed, the
*SEM challenge proposes task dedicated to DDI
extraction and provides annotated corpora. The
main contribution of our work is related to the cre-
ation of biomedical corpora and their annotation
with information on food/drug interactions.

Notice that there is very little work on auto-
matic FDI extraction. Currently, several knowl-
edge bases, semantic resources and repositories
concerning the involved entities (i.e., drugs, food
and diseases) are available (Brown et al., 1999;
NLM; RxNorm; Kuhn et al., 2010). Yet, the FDI
information is fragmented and scattered across
these bases and repositories. As consequence,
there is no explicit relations between these entities.
Linked Data projects, such as Linked Open Drug
Data (LODD4), attempt to create fine-grained
links between such knowledge bases. In addition,
the already mentioned DrugBank (Wishart et al.,
2006) knowledge base contains various kinds of
information on drugs, although their relations with
food is provided as free-text fields and is mainly
concerned with the optimal drug intake time. The
effort done for the formalization of the FDI infor-
mation from DrugBank (Jovanovik et al., 2014)
has been performed manually.

In the next sections, we propose the description
of the methodology for the creation of annotated
corpus with FDIs.

3 Annotation schema: Representation of
drug related information and of FDIs

In Figure 1, we present the model of the drug-
related information. The model is instantiated for
the solumedrol medication. Hence, a given drug
has an international name (DCI) and a therapeu-
tic class (or is-a relation). It has a composition
and is prescribed for specific indications and with
specific features (e.g. dosage, mode, frequency
and duration of administration). Then, a drug may
have adverse effects, including those due to action
of food (FDIs) or of other drugs (DDIs).

The annotated entities must belong to one of
these categories:

4http://www.w3.org/wiki/HCLSIG/LODD
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Figure 1: Model of the drug-related information

1. food names and their different types (ingredi-
ents, cooked meals, food supplements...),

2. meal time (before, during, after),

3. drug names and related information (dosage,
frequency, duration, mode),

4. disorders for which a given drug is indicated,

5. side effects (including FDIs) of drugs.

According to types of actions of drugs on patients
and to the ADME model (section 2.1), we propose
to investigate the following types of interactions
between these entities:

• decrease, reduce, slow down or make disap-
pear drug effect (absorption, elimination...)
due to food,

• increase or speed up drug effect due to food,

• make appear, have (new) side effects, make
appear negative effect, or worsen drug effect
due to food,

• increase side effect of drugs due to food,

• improve drug effect, have positive effect on
drug, or reduce side effect of drug,

• treat a disorder,

• have no effect on drug,

• drug must be taken without food,

• have effect on drug or general relation with
drug. These relations are under-defined: re-
lation or effect exist but it is not possible to
decide what kind of relation or effect it is.

4 Corpus design

The MEDLINE bibliographical base has been
queried in order to extract citations related to food-
drug interactions with the following query:

(”FOOD DRUG INTERACTIONS”[MH] OR

”FOOD DRUG INTERACTIONS*”) AND (”ad-

verse effects*”)

In December 2013, it permitted to obtain a
set of 639 citations, of which we exploit titles
and abstracts. This corpus is called POMELO,
namely grapefruit in French, because has been
built and annotated during the French MESHS-
funded project POMELO.

5 Corpus annotation

The POMELO corpus (639 titles and abstracts cor-
responding to 5,752 sentences) has been manually
annotated in order to make explicit the informa-
tion on food/drug interactions. Two experts have
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been involved in the annotation process: one res-
ident and one medical doctor. The annotation has
been done mainly by the resident, who was helped
by the medical doctor when facing difficult situa-
tions. The annotation has been performed with the
BRAT software (Stenetorp et al., 2012).

To prepare the annotation, we exploited some
existing resources in English and French, which
have been automatically projected on corpus. For
instance, the food has been pre-annotated using:

• the USDA National Nutrient Database5

• the Codex Alimentarius of the WHO (World
Health, Organization)6,

• and resources built from some recipes.

Other entities have been pre-annotated with ex-
isting terminologies: disorders and side effects
(Brown et al., 1999; NLM; Kuhn et al., 2010), and
drugs (RxNorm; Wishart et al., 2006). Besides,
specific resources have been built for the annota-
tion of dosage, frequency, duration and mode of
drug administration.

Then, the POMELO corpus has been checked
out for the correctness of entities and further an-
notated with relations by the annotators.

6 Results

In Figure 2, we give an example of an annotated
citation. Drugs are in blue, food in green and ad-
verse effects in cyan. Other entities are related to
dosage, frequency and duration. Then, relations
between these entities are marked up.

5http://ndb.nal.usda.gov/ndb/search/
list

6http://www.codexalimentarius.org

Entities Nb
drug 4,953
food 2,783
treated disease 645
drug effect 558
side effect 1,985
meal time 1,027
mode 539
dosage 767
duration 86
frequency 282

Table 1: Types and number of the annotated enti-
ties

Relation Nb
decrease absorption 64
slow absorption 21
slow elimination 18
increase absorption 52
speed up absorption 4
new side effect 4
negative effect on drug 91
worsen drug effect 16
has side effect 434
increase side effect 239
positive effect on drug 23
reduce side effect 23
improve drug effect 14
treat 350
no effect on drug 145
without food 23
has effect 233
relation 706

Table 2: Types and number of the annotated rela-
tions

In Tables 1 and 2, we indicate the types and
numbers of entities and relations manually anno-
tated by experts. We can see for instance that
among the most frequent relations we can find:

• drugs have side effects (n=434):
Atovaquone suspension was well tolerated;
diarrhea, nausea, fatigue, and rash were the
most common adverse events.

• drugs treat disorders (n=350):
Metrifonate is an inhibitor of cholinesterase
effective in the treatment of Alzheimer’s dis-
ease.

• food increases side effects (n=239):
Animals infused ethanol-containing diets ad-
equate in carbohydrate developed steatosis,
but had no other signs of hepatic pathology.

• food has no effect on drugs (n=145):
Azimilide dihydrochloride may be orally ad-
ministered to patients without regard to the
prandial state.

• food has undefined effect on drugs
(n=233):
In both studies the equivalence in AUC of
DDVP was paralleled by equivalent effects
on BChE inhibition.
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Figure 2: Sample of annotated document (title and abstract) issued from a Medline citation

• food has undefined relation with
drugs (n=706):
We know that changing a customary diet to
one high in protein and low in carbohy-
drate increases the rates of metabolism of an-
tipyrine and theophylline, and shifting to an
isocaloric diet of low protein- protein-high
carbohydrate slows the rates of metabolism
of these drugs.

This corpus will be made available for the re-
search purposes. In this way, we expect to encour-
age the research on food/drug interactions.

7 Conclusion

We described our work done in order to create
a corpus of biomedical literature (titles and ab-
stracts) annotated with information on food/drug
interactions. The corpus is called POMELO,
namely grapefruit in French. Titles and abstracts
are obtained from MEDLINE bibliographical
base. We first propose a model of the food/drug-
related information, which takes into account var-
ious aspects going from composition of drugs to
their intake and possible adverse effects. Then, the
annotation is performed by two experts: one resi-
dent and one medical doctor. Several entities are
annotated, such as drugs, food, diseases and drug
effects, meal time, and drug-related information
(mode, dosage, duration and frequency). These
entities are pre-annotated automatically and then
checked out manually by the annotators. Then,
relations between these entities are manually an-
notated. Among the most frequent relations, we

can observe for instance: drugs have side effects,
drugs treat disorders, food increases side
effects, food has no effect on drugs, food
has undefined effect on drugs, food has
undefined relation with drugs.

We have several orientations for the future work
on this research. One of the orientations is con-
cerned by increasing the size and quality of the an-
notated corpus: (1) an updated MEDLINE query
indicates that currently there are more citations
indexed with the queried keywords; (2) another
related MESH keyword (herb/drug interactions)
can be exploited to enrich the corpus; (3) even
if two experts have been involved in the anno-
tation, the annotation can be done by other in-
dependent annotators; (4) finally, this English-
language annotated corpus can be enriched with
French-language citations and documents. An-
other orientation is related to the exploitation of
this annotated corpus: (1) use of the annotations
for creating the model for automatic extraction of
food/drug interactions; (2) exploit this model for a
systematic extraction of FDIs and their recording
together with their evidence level; (3) creation of
a knowledge base with food/drug interactions and
their use by medical professionals and patients.

The POMELO corpus will be made available for
the research purposes on the web site of the MIAM
project (https://miam.limsi.fr/).
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Abstract

In this paper we describe annotation pro-
cess of clinical texts with morphosyntac-
tic and semantic information. The corpus
contains 1,300 discharge letters in Bulgar-
ian language for patients with Endocrinol-
ogy and Metabolic disorders. The anno-
tated corpus will be used as a Gold stan-
dard for information extraction evaluation
of test corpus of 6,200 discharge letters.
The annotation is performed within Clark
system — an XML Based System for Cor-
pora Development. It provides mecha-
nism for semi-automatic annotation. First
a pipeline for Bulgarian morphosyntactic
annotation and a cascaded regular gram-
mar for semantic annotation are run, then
rules for cleaning of frequent errors are ap-
plied. At the end the obtained result is
manually checked. Our goal is to adapt
the morphosyntactic tagger to the domain
of clinical narratives as well.

1 Introduction

Today the electronic patient records and clinical
notes are a fast growing research resource of med-
ical data. These free text documents written by
physicians contain a lot of valuable medical infor-
mation despite the fact that sensitive data makes
them hard to work with.

In countries like Sweden, UK and US re-
searchers have started to use the electronic health
records (EHR) to create corpora for two main pur-
poses – in order to perform information extraction
for medical research and for training domain spe-
cific systems to cope with these texts. Related sub-
tasks are: automated de-identification for research
work with sensitive data; extraction of medical
time-lines in case development, with identification

of deceasse and treatment; doing information re-
trieval and text mining; performing research in or-
der to find relationships between diagnoses, treat-
ments etc.; creation of golden standard corpora for
evaluation and training; name entity recognition
and annotation.

In this paper we describe annotation with mor-
phosyntactic and semantic information of clinical
texts. The corpus contains 1,300 discharge let-
ters in Bulgarian language for patients with En-
docrinology and Metabolic disorders. The anno-
tated corpus will be used for information extrac-
tion evaluation.

The paper is structured as follows. Section 2
overviews related work with focus on the techno-
logical solutions. Section 3 presents the method
we use, section 4 – the experiments and results.
Section 5 contains the conclusion and discusses
future work.

2 Related Work

Relevant references discuss annotation projects for
corpora of medical texts in various natural lan-
guages. Studying the literature we adapted some
principles for our annotation, although the sources
are not directly connected to Bulgarian language.

A variety of approaches are described in the lit-
erature: e.g. for temporal annotations; pipeline
with lexical features to extract time and event
mentions; statistical chunking system for anno-
tation; pipeline of tools for automatic processing
of clinical texts and tokenization through part-of-
speech tagging and dependency parsing; a sim-
plification system, for automated change and ad-
justing of the text in health records in order to
make them easier to understand; biomedical entity
recognition dataset using a human-into-the-loop
approach. Here we enumerate some annotation
approaches correspondingly to language layers.
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Entities. The article (Ogren et al., 2007) re-
ports about the construction of a gold-standard
dataset consisting of annotated clinical notes suit-
able for evaluating a biomedical named entity
recognition system. The dataset is the result of
consensus between four human annotators and
contains 1,556 annotations on 160 clinical notes
using 658 unique concept codes from SNOMED-
CT corresponding to human disorders. Inter-
annotator agreement was calculated on annota-
tions from 100 of the documents for span (90.9%),
concept code (81.7%), context (84.8%), and sta-
tus (86.0%) agreement. Another corpus is de-
signed to support automatic recognition of symp-
toms in unseen text. It consists of clinical free
text records enriched with annotation for symp-
toms of a particular disease (ovarian cancer). The
data (approximately 192K words) was annotated
by three clinicians and a procedure was devised
to resolve disagreements. The corpus is allows
also to investigate the amount of symptom-related
information in clinical records that is not coded
(Koeling et al., 2011). Recognising entities is
related to de-identification of sensitive informa-
tion; the definitions of annotation classes are not
self-evident. The article (Dalianis and Velupil-
lai, 2010) presents two refined variants of an anno-
tated gold standard corpus for de-identification of
patient records in Swedish, one created automati-
cally, and one created through discussions among
the annotators. These are used for the training and
evaluation of an automatic de-identification sys-
tem based on the Conditional Random Fields al-
gorithm. Promising results are acheived for both
Gold Standards: F-score around 0.80 for a number
of experiments on 4-6,000 instances, with higher
results for certain annotation classes. The con-
struction of three annotated corpora is presented in
(Deleger et al., 2012) that serve as gold standards
for medical NLP tasks. The annotated narratives
are clinical notes from the medical record, clinical
trial announcements, and FDA drug labels. High
inter-annotator agreements is reported; the corpora
are made public to facilitate translational NLP
tasks that require cross-corpora interoperability.
An annotated corpus (PhenoCHF), focussing on
the identification of phenotype information for a
specific clinical sub-domain, i.e., congestive heart
failure (CHF), is presented in (Alnazzawi et al.,
2014). The corpus integrats information from both
EHRs (300 discharge summaries) and literature ar-

ticles (5 full-text papers). The annotation scheme,
whose design was guided by a domain expert, in-
cludes both entities and relations pertinent to CHF.
Two further domain experts performed the annota-
tion with agreement rates up to 0.92 F-Score.

Syntax. The paper (Fan et al., 2013) presents
the development of a corpus with syntactic annota-
tion (treebank) with intention to handle ill-formed
sentences which are common in clinical text. A
supplement to the Penn Treebank II guidelines
was developed for annotating clinical sentences.
After three iterations of annotation and adjudica-
tion on 450 sentences, the annotators reached an
F-measure agreement rate of 0.930 (while intra-
annotator rate was 0.948) on a final independent
set. A total of 1100 sentences from progress notes
were annotated that demonstrated domain-specific
linguistic features. A statistical parser retrained
with combined general English (mainly news text)
annotations and our annotations achieved an accu-
racy of 0.811 (higher than models trained purely
with either general or clinical sentences alone). In
(Savkov et al., 2016), an approach to training do-
main specialists with no linguistic background to
annotate clinical text is presented. The authors
describe a de-identified corpus of free text notes,
a shallow syntactic and named entity annotation
scheme. A statistical chunking system for such
clinical text with a stable learning rate and good
accuracy is presented, indicating that the manual
annotation is consistent and that the annotation
scheme is tractable for machine learning.

Semantics. The Clinical E-Science Framework
(CLEF) project aims at the identification of se-
mantic entities and relationships in clinical narra-
tives. The CLEF corpus consists of clinical narra-
tives, histopathology reports and imaging reports
from 20 thousand patients. A subset of this cor-
pus was selected for manual annotation of clinical
entities and relationships (Roberts et al., 2007).
By entity, some real-world thing referred to in the
text is meant: the drugs that are mentioned, the
tests that were carried out etc. The relationships
between entities correspond to the condition in-
dicated by a drug, the result of an investigation
etc. Annotation is anchored in the text. Annota-
tors mark spans of text with a type: drug, locus
and so on. Annotators may also mark words that
modify spans (such as negation), and mark rela-
tionships as links between spans. Two or more
spans may refer to the same thing in the real world,
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in which case they co-refer. Each text was an-
notated by 2 experts independently. In total, 27
annotators are involved in debugging, annotation
and review roles. They are drawn from practicing
clinicians, medical informaticians, and final year
medical students. This corpus was used as a gold
standard prividing temporal links (called CTlinks)
between TLCs (Temporally Located CLEF enti-
ties, which comprise investigations, interventions
and conditions) and temporal expressions: dates
and times (both absolute and relative), as well as
durations, as specified in the TimeML TIMEX3
standard (Roberts et al., 2008). The gold standard
is a resource against which to assess the Informa-
tion Extraction (IE) results of CLEF system. In
addition, statistical models of the text may be built
by machine learning algorithms. In 2008 the au-
thors write that "the annotated CLEF corpus is the
richest resource of semantically marked up clin-
ical text yet created". The semantic annotation
scheme, the annotation methodology, and the dis-
tribution of annotations in the final corpus are de-
tailed in (Roberts et al., 2009).

Discource and Standardization. The Ontol-
ogy Development and Information Extraction cor-
pus (ODIE) annotated anaphoric relations in clini-
cal narratives. The gold standard annotations re-
sulted in 7214 markables, 5992 pairs and 1304
chains. These early shared annotation resources
revealed the lack of common annotation schemes
and community adopted standards and conven-
tions for normalization (Savova, 2017). Re-
cent ambitious projects aim at the annotation of
timelines, in order to enable natural language un-
derstanding by discovering events and their rela-
tions on a timeline. Temporal relations are of
prime importance in biomedicine as they are in-
trinsically linked to diseases, signs and symp-
toms, and treatments. The annotation guidelines
of THYME project (“Temporal Histories of Your
Medical Events”) are based on TIMEX31.

3 Methodology

The annotation is performed in two steps:

1. Automatic preprocessing and

2. Manual errors checking and correction.

The first step is done by BulTreeBank pipeline
for Bulgarian (Savkov et al., 2012) updated with

1http://clear.colorado.edu/compsem/documents/
THYME_guidelines.pdf

Figure 1: Automatic preprocessing

new tools — we substituted previous POS tagger
and dependency parser with new ones based on
MATE tool2. The process starts with simple dis-
charge letter in text format written by the physi-
cian (Fig. 1). The text document is converted to
XML format. After that we use tokenizer, sen-
tence splitter, POS tagger and lemmatizator to au-
tomatically process the raw texts. The result from
this processing includes the following informa-
tion:

• Paragraph element (p) — contains some
meta data like age, gender and location of the
patient and the main sections of the discharge
letter – anamnesis, health status, diagnosis,
treatment, clinical exams, consultations, etc.

• Sentence element (s) — does not have addi-
tional information. Very hard to be done be-
cause the physicians neglect the punctuation
rules.

• Token node (tok) — the main node of the
tree. It has all the linguistic information like

2http://www.ims.uni-stuttgart.de/forschung/ressourcen/
werkzeuge/matetools.en.html
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POS and lemmas. Also it has the term at-
tribute.

The overall performance accuracy of the origi-
nal pipeline droped significantly due to the reach
medical terminology included in the texts. The re-
sult XML documents are after that checked and
annotated further manually. During this process
we are using CLaRK system3 — an XML Based
System for Corpora Development (Simov et al.,
2001), (Simov et al., 2004). The core of CLaRK
is an Unicode XML Editor, which is the main
interface to the system. Via it the user could
edit, search and process the annotated documents.
The system contains several processing tools like
XML elements and attributes addition, deletion,
and substitution. For navigation over XML doc-
uments the system exploit XPath language. Two
main tools of the system are (1) Regular Cascaded
Grammars; and (2) Constraints over XML Docu-
ments.

Regular Grammars in CLaRK System. The
regular grammars in CLaRK System work over to-
ken and element values generated from the con-
tent of an XML document and they incorporate
their results back in the document as XML markup
(called return markup) (Simov et al., 2002). The
tokens are determined by the corresponding tok-
enizer. The element values are defined with the
help of XPath expressions, which determine the
important information for each element. In the
grammars, the token and element values are de-
scribed by token and element descriptions. These
descriptions could contain wildcard symbols and
variables. The variables are shared among the to-
ken descriptions within a regular expression and
can be used for the treatment of phenomena like
syntactic agreement. The grammars are applied in
a cascaded manner. The general idea underlying
the cascaded application is that there is a set of
regular grammars. The grammars in the set are in
a particular order. The input of a given grammar
in the set is either the input string, if the gram-
mar is first in the order, or the output string of the
previous grammar. The evaluation of the regular
expressions that define the rules, can be guided
by the user. We allow the following strategies for
evaluation: "longest match", "shortest match" and
several backtracking strategies.

3http://www.bultreebank.org/clark/index.html

Constraints over XML Documents. The con-
straints that we have implemented in the CLaRK
System are generally based on the XPath lan-
guage. We use XPath expressions to determine
some data within one or several XML documents
and thus we evaluate some predicates over the
data. Generally, there are two modes of using
a constraint. In the first mode validation, the
constraint is used for a validity check, similar to
the validity check, which is based on a DTD or
an XML schema. In the second mode insertion,
the constraint is used to support the change of
the document to satisfy the constraint. The con-
straints in the CLaRK System are defined in the
following way: (Selector, Condition,
Event, Action), where the selector defines
to which node(s) in the document the constraint
is applicable; the condition defines the state of the
document when the constraint is applied. The con-
dition is stated as an XPath expression, which is
evaluated with respect to each node, selected by
the selector. If the XPath expression is evaluated
as true, then the constraint is applied; the event de-
fines when this constraint is checked for applica-
tion. Such events can be: selection of a menu item,
pressing of a key shortcut, an editing command;
the action defines the way of the actual constraint
application.

The combination of XLM editor with process-
ing tools is a very powerful tool for minimiza-
tion of human intervention during the annotation
of new corpora. The manual work is inevitable,
but many of the mistakes of the automatic pro-
cessing and also the new annotations are regular.
Thus, very quickly the annotator recognizes them.
In these cases the system provides necessary sup-
port for the annotator to write procedures for au-
tomatic repairing or automatic annotation of these
regular cases.

At the end a human annotator checks the results
and finalizes the annotation. The new information
(besides the corrected one) comprises:

• phrase node (ph) — subdivision of the sen-
tence with more than one token - bronchial
asthma or spine (гръбначен стълб in Bul-
garian). It has the term attribute.

• time string (ts) — subdivision of the sentence
with more than one token for dates and time.
It has the time attribute.

• dosage string (ds) — subdivision of the sen-
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Figure 2: Example 1. Annotation of the upper and lower limbs status

Figure 3: Example 2. Annotation of medical terms in Latin transliterated in Cyrillic

tence with more than one token for doses –
1+1/2 pill or 125 mcg per day.

Information from the attributes:

• term attribute — marks the medical terms
and bears information about their type

• term values — diagnosis (DIA), symp-
tom (SIM), status (STT), organ (ORG),
body system (SIS), medicament (MED), test
(TST) and index (POK). It is likely for more
to come up.

• time attribute — bears information about ab-
solute (abt value) time (10.02.1999) or rela-
tive (rtt value) time (two months ago).

We apply various vocabularies which help us to
figure out the semantics of the words in the near
context.

The 10 vocabularies are: (1) Vocabulary of the
100,000 most frequent Bulgarian terms (Osen-
ova and Simov, 2010); (2) Generic medical terms
in Bulgarian; (3) Anatomical terms in Latin; (4)
Generic names of drugs for Diabetes Mellitus
Treatment; (5) Laboratory tests; (6) Diseases; (7)
Treatment; (8) Symptoms; (9). Abbreviations;
(10) Stop words;. These are applied in the spec-
ified order and the annotations of the latter ones
override the previous ones. The vocabulary cover-
age is shown on Table 1. In the columns are shown
the size of each vocabulary (Size) and the number
of tokens matched in the text by this vocabulary

Table 1: Lexical Profile Statistics.
Category Size Tokens

1. btb 102,730 41,582
2. bg med 3,624 1,545
3. term anat 4,382 3,792
4. drugs 154 12
5. lab test 202 18
6. diagnoses 8,444 54,431
7. treatment 339 4,170
8. symptoms 414 4,180
9. abbrev 477 14,404
10. stop words 805 67,153

(Tokens). The largest coverage has the vocabulary
of stop words, then diagnoses, next is the vocab-
ulary of most frequent Bulgarian words followed
by the markup words.

4 Experiments and Results

The experiments were done over a set of 1,370
pseudoanonymised discharge letters in Bulgarian
for patients with Endocrinology and Metabolic
disorders. The discharge letters text contains med-
ical terminology in Latin alphabet (about 1% of
all term tokens in our present corpus), sometimes
with different transcriptions in Cyrillic alphabet.
There are specific term abbreviations both in Bul-
garian and Latin (about 3% of the tokens), numer-
ical values (16% of the tokens) and about of 1% of
all term tokens are presented as abbreviations.
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One of the main problems is that huge groups of
out of the vocabulary terms are available in the dis-
charge letters. They are several groups - medical
terms in Latin, medical terms in Latin transliter-
ated in Cyrillic; brand names of drugs and medi-
cations, abbreviations, etc. There are 7,108 occur-
rences of drug names in 1,213 of the discharge let-
ters, in average 5.86 drugs per document. These
is a quite dynamic information that needs to be
updated monthly and the annotation tool also will
lack some information.

The problem of Latin written in Cyrillic is
about fast and decent annotation by people with-
out knowledge of medical Latin.
статус пост адреналектомиам билатералис(status
post adrenalektomiam bilateralis)
аденомектомиам транссфеноидалем ет телега-
матерапиам(adenomektomiam transsfenoidalem ет
telegamaterapiam)
статус пост тиреоидектомиам про карцинома папи-
ларе лоби синистри (status post thyreoidektomiam
pro carcinoma papillari lobby sinistri)

The method is simple: to take every phrase sep-
arately and look for attributes and phrasal base and
prescribe Adj to attributes and N for the base (Fig.
3). There is created a grammar in CLaRK for au-
tomated phrase (ph).

Another problem is that there are many typos in
the documents and a variety of abbreviations for
same terms.

5 Conclusion and Further Work

We report work in progress about annotation of
clinical narratives in Bulgarian.The role of the
grammars (phrasal grammar) in quality of the
analysis and time-saving in the annotation pro-
cess. Phrases do not improve the morphologi-
cal analysis. Good morphological analysis and
lemma recognition improves the phrasal grammar
and speeds up the work process. One of the main
problems is that we did no have yet several an-
notations for each document and inter-annotation
agreement is not evaluated.

Further work include some preprocessing of the
corpus for spelling errors correction both for Latin
and Cyrillic that will help in the automatic pro-
cessing. Another direction for further work is the
training of a domain specific tokenizer and POS
tagger and improving of the general tokenizer and
tagger. Iterative enrichment of the vocabularies
after the manual correction of the annotation will
also help.

Acknowledgments

The research presented here is partially sup-
ported by the grant SpecialIZed Data MIning
MethoDs Based on Semantic Attributes (IZIDA),
funded by the Bulgarian National Science Fund in
2017–2019. The team acknowledges also the sup-
port of Medical University – Sofia.

References
Noha Alnazzawi, Paul Thompson, and Sophia Ana-

niadou. 2014. Building a semantically anno-
tated corpus for congestive heart and renal fail-
ure from clinical records and the literature. In
EACL 2014 Workshop-The Fifth International Work-
shop on Health Text Mining and Information Anal-
ysis, Gothenburg, Sweden, 27 April, 2014, edited
by Velupillai, Sumithra and Duneld, Martin and
Henriksson, Aron and Kvist, Maria and Skeppst-
edt, Maria and Dalianis, Hercules. Association for
Computational Linguistics, pages 69–74.

Hercules Dalianis and Sumithra Velupillai. 2010. De-
identifying swedish clinical text-refinement of a
gold standard and experiments with conditional ran-
dom fields. Journal of biomedical semantics 1(1):6.

Louise Deleger, Qi Li, Todd Lingren, Megan Kaiser,
Katalin Molnar, et al. 2012. Building gold stan-
dard corpora for medical natural language process-
ing tasks. In AMIA Annual Symposium Proceedings.
American Medical Informatics Association, volume
2012, page 144.

Jung-wei Fan, Elly W Yang, Min Jiang, Rashmi Prasad,
Richard M Loomis, Daniel S Zisook, Josh C Denny,
Hua Xu, and Yang Huang. 2013. Syntactic pars-
ing of clinical text: guideline and corpus develop-
ment with handling ill-formed sentences. Journal
of the American Medical Informatics Association
20(6):1168–1177.

Rob Koeling, John Carroll, Rosemary Tate, and
Amanda Nicholson. 2011. Annotating a corpus of
clinical text records for learning to recognize symp-
toms automatically .

Philip V Ogren, Guergana K Savova, Christopher G
Chute, et al. 2007. Constructing evaluation cor-
pora for automated clinical named entity recogni-
tion. In Medinfo 2007: Proceedings of the 12th
World Congress on Health (Medical) Informatics;
Building Sustainable Health Systems. IOS Press,
page 2325.

Petya Osenova and Kiril Simov. 2010. Using the lin-
guistic knowledge in bultreebank for the selection of
the correct parses .

Angus Roberts, Robert Gaizauskas, Mark Hepple, Neil
Davis, George Demetriou, Yikun Guo, Jay Subbarao
Kola, Ian Roberts, Andrea Setzer, Archana Tapuria,

86



et al. 2007. The clef corpus: semantic annotation
of clinical text. In AMIA Annual Symposium Pro-
ceedings. American Medical Informatics Associa-
tion, volume 2007, page 625.

Angus Roberts, Robert Gaizauskas, Mark Hepple,
George Demetriou, Yikun Guo, Ian Roberts, and
Andrea Setzer. 2009. Building a semantically anno-
tated corpus of clinical texts. Journal of biomedical
informatics 42(5):950–966.

Angus Roberts, Robert Gaizauskas, Mark Hepple,
George Demetriou, Yikun Guo, Andrea Setzer, and
Ian Roberts. 2008. Semantic annotation of clini-
cal text: The clef corpus. In Proceedings of the
LREC 2008 workshop on building and evaluating
resources for biomedical text mining. pages 19–26.

Aleksandar Savkov, John Carroll, Rob Koeling, and
Jackie Cassell. 2016. Annotating patient clinical
records with syntactic chunks and named entities:
the harvey corpus. Language resources and eval-
uation 50:523.

Aleksandar Savkov, Laska Laskova, Stanislava
Kancheva, Petya Osenova, and Kiril Simov. 2012.
Linguistic analysis processing line for bulgar-
ian. In Nicoletta Calzolari (Conference Chair),
Khalid Choukri, Thierry Declerck, Mehmet Uğur
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