
Web personalization using Extended Boolean
Operations with Latent Semantic Indexing

Preslav Nakov

Bulgaria, Sofia, Studentski grad. bl.8/room 723

 (preslav@rila.bg)

Key words: Information Retrieval and Presentation, Search, Data Mining, Natural Language
Processing, Data Mining and Knowledge Discovery, Distance Learning and Electronic Commerce,
Knowledge Construction from the Web

Abstract. The paper discusses the potential of the usage of Extended Boolean operations for
personalized information delivery on the Internet based on semantic vector representation
models. The final goal is the design of an e-commerce portal tracking user’s clickstream
activity and purchases history in order to offer them personalized information. The emphasis
is put on the introduction of dynamic composite user profiles constructed by means of
extended Boolean operations. The basic binary Boolean operations such as OR, AND and
NOT (AND-NOT) and their combinations have been introduced and implemented in variety
of ways. An evaluation is presented based on the classic Latent Semantic Indexing method for
information retrieval using a text corpus of religious and sacred texts.

Introduction

The pre-Internet era imperative stated that more data
means better chance to find the information needed.
Internet has imposed new standards and new way of
thinking. In 1994 the World Wide Web Worm
received an average of about 1500 queries per day, in
November 1997 only one of the top four commercial
search engines finds itself (returns its own search page
in response to its name in the top ten results) and
nowadays the AltaVista search engine serves
hundreds of millions queries per day. With the
enormous growth of the information available on the
Web the goal has changed and the main efforts are
directed towards the limitation of information
presented to the user. ([5])
The first that felt the problem were of course the
search engines and they offered the users several
possibilities for advanced query refinements.
Unfortunately their usage remained highly limited,
since as Marchionini argued: “End users want to
achieve their goals with a minimum of cognitive load
and a maximum of enjoyment. …humans seek the
path of least cognitive resistance and prefer
recognition tasks to recall tasks; most people will
trade time to minimize complexity”. [17]
The problem of the relevance of information
presented to the users was well understood by the
commercial Internet sites. When people find some
magazine irrelevant to their information expectations
they simply stop to buy it. It is the same with the Web
sites: if the information presented does not meet the
customers’ needs they never return there.
The limited volume of the magazine does not permit
to include everything people would find relevant and
they tend to specialize in a particular area. People buy
only those magazines that are relevant to their specific
interests. The Web sites and portals are a different
case because there are no so strong limitations of the
amount of information to be published, as is the case
with the magazines. The biggest Internet portals like
those of Yahoo!, MSN or Netscape can offer almost
all a customer may need. The problem is how to
organize the site in order to help the users find what
they are actually looking for.

The Idea of the User Profile

The most valuable decision is the development of a
dynamic model of the interests for the specific user.
The first attempt in the development of user’s profile
was asking the user to enter some words that best
describe his or her interests. Another possibility is the
selection of the relevant ones among a set of articles.

Each of these articles can be assigned a list of key
words that will be used to limit the information
presented to the user. For example, a personalized
search engine could return information only from the
field of interest to the user. The same way a well-
personalized Web site changes dynamically its
content in order to present to the user only relevant
information, news or advertisements, according to the
previously created profile. ([10])
Asking explicitly the users for some kind of relevance
feedback may not always be the best way to create
their profiles. This is especially the case when using
key words. As Furnas, Landauer, Gomez and Dumais
have shown in [11], people use the same words to
describe the same subject in 10-20% of the time (see
also [4]). The relevance feedback when using whole
articles may not be correct too, because of the
influence of some subjective factors like novelty,
informativeness or familiarity to the user. Some
sites/portals offer the customers the opportunity to
receive a free “passport”. The users are asked to fill a
form and answer a set of common questions that will
be used as a primary source for the construction of
their profiles. This may be of great importance and
can lead to significant improvements.
The problem is that people tend to get annoyed when
are asked to do something in order to help the system.
That is why several business sites/portals developed
specialized mechanisms for automatic user’s profile
construction. Some of the recent studies and
applications in the field include the automatic tracking
and recording of the user’s activity when browsing on
the site: e.g. page visited, button clicked, hyper link
followed, search query entered etc. The information
collected this way is called clickstream and is stored
in specially designed clickstream data marts and Data
Webhouses. Thus, the Web site/portal retains a full
history of the user’s activity that permits the
construction of more effective and objective profile.
([13,14,15,21])
For almost all the cases the user profile has a dynamic
character and changes over time since new
information becomes available. The general sources
of additional information are the raw details of the
recorded user activity: the clickstream. Most of the
systems use a vector representation of the user profile.
This is very convenient and, as we will show later,
simplifies its creation, support and usage. Although
there are several different techniques for vector
generation of the type described, we have chosen the
Latent Semantic Indexing for several reasons the
primary of which is that it is a well-studied classic
method that will allow us to concentrate on the

specific details of profile creation and usage we want
to study.

Latent Semantic Indexing
The Latent Semantic Indexing (LSI) is a powerful
statistical technique for fully automatic indexing and
retrieval of information. LSI is generally applied to
texts and represents a two-stage process that consists
of (see [7], [9], [16] for details):

• off-line construction of document index, and
• on-line respond to user queries.

The off-line part of the process is the training part
when LSI creates its index. First a large word-to-
document matrix X is constructed where the cell (i,j)
contains the frequencies of occurrence of the i-th
word into the j-th document. After that, a singular
value decomposition (SVD) is performed which gives
as a result three matrices D, T (both orthogonal) and S
(diagonal), such that X=DSTt. Then all three matrices
are truncated in such a way that when we multiply the
truncated ones D′, S′ and T′ we get a new matrix X′
which has the same dimensionalities as X and is the
least-squares best fit approximation of X. This results
in the compression of the original space in a much
smaller one where we have just a few number of
significant factors (usually 50-400). Each document is
then represented by a meaning vector of low
dimensionality (e.g. 100). It is possible to perform a
sophisticated SVD which speeds the process by
directly finding the truncated matrices D′, S′ and T′
(see [4]).
The on-line part of LSI receives the query (pseudo-
document) user typed and finds its corresponding
vector into the document space constructed by the off-
line part using a standard LSI mechanism. Now we
can measure the degree of similarity between the
query and the indexed documents by simply
calculating the cosine between their corresponding
vectors. Other possibilities include the usage of the
angle, Euclidean distances between the normalized
document vectors, Manhattan, Chebishov’s and other
measures.

Extended Boolean Operations

We return now to the automatic creation of vector
representation of the user’s profiles. Consider an e-
commerce portal tracking users’ clickstream activity
as have been discussed above. The information
collected can be used in variety of ways including
analysis of the quality of the Web site structure and
organization, etc. ([13]) There are several things we

are interested in when constructing the users’ profiles
among which the most important are:

• Which sections/pages on the site the customer
visits most frequently? What do they content?

• Which pages are “session killers” for our
customer?

• How long time does the customer spend on
the site?

• Who is our customer? How often he or she
visits the site?

• Has the customer purchased something and
what, if any? What kind of products?

• Is it a complaining customer that often returns
back our products?

Having collected information like this will allow us to
create a sophisticated high quality user profile that
will permit offering him or her personalized news,
advertisements, banners etc. We would like to create a
profile vector that is closely aligned to the vectors of
the pages the user is interested in and is far from those
which seem to be uninteresting. A page of interest for
the user may be a page where he goes often or spends
a long time. The longer the user stays on the page, the
more relevant it may be to his or her interests. On the
other hand we must beware not taking too seriously
the extremely long times (the user has just left the
browser open) giving at the same time higher weights
for the pages related to the user’s purchases, if any.
So, we would like to combine the vectors of the
relevant pages, weighted according to the frequency
of the visits and the duration of the time spent there,
in order to obtain the profile vector. This implies the
need for a weighted OR similarity measure. We
would like also to exclude the pages that seem to be
strongly uninteresting for the user: e.g. those where he
or she (often) cancels the session or those, we know
he or she is not interested in, according to a relevance
feedback, possibly taken from the user “passport”
registration information supplied. This implies the
need for excluding NOT (MINUS) Boolean operation.
These examples show that the extended Boolean
operations play a major role in the process of user’s
profiles creation.
Another possibility is to design a composite profile by
keeping several different vectors whose weighted
combination gives the profile vector. This results in
improved performance since we can manage the
different vectors the profile is built of separately and
combine (some of) them only when needed. This
allows the creation of a dynamic profile that may be
recalculated when needed and with changed weights.
For example, we may like to drop some elements of

the user profile that are no longer relevant (because
are old), or at least reduce their weights.
Consider we have collected a complete history of the
customers’ purchases and clickstream activity, and
want to send the users several advertisements by e-
mail or show them on the Web when browsing the
site/portal. We have already developed LSI index
based on the text description of each product. We can
think of the purchases/clicks as query components and
of the advertisement as a new document in the same
space. We need some kind of similarity function that
will give us a measure of the similarity between our
advertisements and the user’s profile. Let us define d1,
d2, …, dn as distances (in LSI sense) between the ad
and the n components of the query. The classic LSI
algorithm calculates the cosines between the vectors
in order to find the degree of their similarity. Most of
the similarity measures for the Boolean operations we
propose below are based on Euclidean distances,
although we can use some other distances (angle,
Manhattan distance, Chebishov’s distance, power
distance, etc.). It is important to note that we must
first normalize the vectors before calculating
Euclidean distances. All Boolean operations proposed
return a value between 0 and 1. Almost the same
results can be obtained when using the classic cosines
but for some functions it is difficult to fit the values
returned in the interval [0,1]. We have experimented a
lot trying a large quantity of measures and found that
the usage of Euclidean distance seems to be the most
appropriate.

Figure 1. OR similarity for two-component query

There are several similarity measures we have
experimented with:
• OR-similarity measure. This measure depends

only on the minimal distance between the
document and the query components and has the
following general representation:
Sor = f(min(g(d1),g(d2),…,g(dn))), where f(x) and
g(x) are some one-argument functions.

In case we have more information for the query
we can add weights to the query components and
modify g(x) to g(x, w). So the formula is:
Sor = f(min(g(d1,w1),g(d2,w2),…,g(dn,wn)))
OR similarity measure has well separated picks at
the query components vectors.
Example: The similarity measure for two- and
three-component query,
f(x) = 1/(1+x)
g(x) = x
are shown on figures 1 and 2.

Figure 2. OR similarity for three-component query

• AND-similarity measure. This measure depends
only on the sum of distances between the
document and query components. It has the
following general representation:
Sor = f(g(d1)+g(d2)+…+g(dn))), where f(x) and g(x)
are some one-argument functions.
And again if we have more information for the
query and we can add weights to the query
components and modify g(x) to g(x, w). In this
case the formula is:
Sor = f((g(d1,w1) + g(d2,w2) + … + g(dn,wn)))
Usually this measure can be thought of as a
superposition of distinct similarity measures of
the query components.
Example: The similarity measure for two- and
three-component query,
f(x) = 1/(1+x)
g(x) = x
are shown on figures 3 and 4.

• Combination of the previous two (AND-OR).

This similarity measure is a combination between
the previous two.
Sand-or = f(Sand, Sor)
Example: We can use linear combination between
Sor and Sand measures.

S = k.Sor + (1–k).Sand , where k is constant and
0≤k≤1.

Figure 3. AND similarity for two-component query

Figure 4. AND similarity for three-component query

Figure 3 shows the two component query results
for k = 0.5. We still have two distinct parts like
the OR-similarity function but higher values in
the middle region between them just like the
AND-similarity function.
Figures 5 and 6 show the results for a two- and
three component queries with k = 0.5 Figure 7 is
an example of weighed combined similarity
measure.

• MINUS and Binary NOT (AND-NOT)-
similarity measure. In case we want to exclude a
vector we can apply two different similarity
measures: MINUS and NOT. For the MINUS
similarity measure, if the vector considered is
more similar to the exclude vector it will receive a
similarity measure of 0. (see the second clause
below) Otherwise we return a the similarity
measure that takes in account the distance to the
include vector only.
Example:
We can use the following MINUS-measure:

Snot = d1, when d1<d2, and
Snot = 0, else.

The result is shown on figure 8.

Figure 5. Combined similarity for 2 comp. query, k=0.5

Figure 6. Combined similarity for 3 comp. query, k=0.5

The problem with this measure is that it takes in
account d2 only when deciding whether to cut the
value. A more sophisticated implementation may
be used: the NOT (AND-NOT) similarity
measure. If the document is more similar to the
exclude document text it will receive a similarity
measure of 0, but otherwise we return a similarity
measure between 0 and 1 that takes in account the
distances to both documents.
Example:
We can use the following NOT-measure:

Snot = 1 – d1 / (1 + d2), when d1<d2, and
Snot = 0, else.

The result is shown on figure 9.

Figure 7. Weighted combination for 2 comp. query, k=0.5

Figure 8. MINUS similarity measure

Figure 9. NOT (AND-NOT) similarity measure

Application to Religious and Sacred Texts

The first step toward the construction of the dynamic
user profile is development of the appropriate
extended Boolean operations. We have experimented
the performance of the Extended Boolean Operations
presented above on a large number of different
corpuses containing thousands of documents by
thousands of words and hundreds of megabytes.
We will demonstrate how the functions we introduced
above work on a small corpus of religious and sacred
texts we found at:
http://davidwiley.com/religion.html. We selected 196
different religious and sacred texts from 14
categories: apocrypha (acts, apocalypses, gospels,
writings), Buddhism, Confucianism, Dead Sea scripts,
The Egyptian Book of Dead, Sun Tzu: The Art of
War, Zoroastrianism, The Bible (Old and New
Testaments), The Quran and The Book of Mormons.
The experiments were made in a 30 dimensional
space (see Fig.1) with a preliminary to SVD
replacement of the frequencies in X (196 documents ×
11451 words) with their logarithms. Fig. 10 illustrates

the inter-document similarities given by the
correlation matrix (196×196), shown in 5 different
colors for the five correlation intervals:

• 87,5-100%, black color;
• 75-87,5%, dark gray;
• 62,5-75%, gray;
• 50-62,5%, light gray;
• 0-50%, white.

The dark rectangles in the main diagonal show the
high correlation between texts belonging to the same
religion. For example: the black rectangle from the
bottom right corner contains texts from the Book of
Mormons. To the left and up on the main diagonal can
be found the Quran, then the Old Testament (The
Bible), then come the Zoroastrian texts, The New
Testament (The Bible), the Sun Tzu’s Art of War, the
Egyptian Book of the Dead and so forth. And the
smooth rectangle in the upper left corner shows the
relatively high similarity between all kinds of
apocrypha present. We see for example that The Book
of Mormons is more correlated to the New Testament
than to The Old Testament.

Some of the religious texts are too big (like the Bible
or the Quran) and we have selected just a part of
them. The corpus of texts selected for our experiments
on the behavior of the different Boolean operations
we will work on is about 5,5 MB and is well
structured: there are well-separated clusters. The clear
rectangles we can see on Fig. 10 correspond to texts
from different religions, which made the analysis of
the correctness of the results we obtained easier.

Figure 10. Correlation between religious texts (196 × 196)

0

1 0

2 0

3 0

4 0

5 0

6 0

% 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 8 5 9 0 9 5

do
cu

m
en

ts
co

un
t

o r 0 . 0 0
o r 0 . 2 0
o r 0 . 4 0
o r 0 . 6 0
o r 0 . 8 0
o r 1 . 0 0

We performed several different experiments that can
be separated in two general classes: “practical” and
“theoretical”. The “practical” experiments include the
composition of two or more different queries and their
combination with Boolean operations. The second
class of “theoretical” experiments includes the choice
of two or more texts from the same space and
performing queries using Boolean operations (OR,
AND and NOT). We think that the second class
illustrates better the general idea and the results we
obtained.
We developed several specialized software command
line tools supporting both the on-line and off-line LSI
stages using the standard SVDPACKC routines for
the singular value decomposition (see [4]). A LSI
based natural language query search engine has been
developed based on these tools and exposed on the
Web at (http://self reference withdrawn).
Below are presented eight different tables that contain
experimental results obtained for two example texts
from the corpus belonging to different well-separated
clusters (religions): the first chapter of the Sun Tzu’s
Art of War (suntzu1.txt) and the first chapter of the
Confucianism religious texts (conf1.txt). The first
table contains the ranked top list of the documents
similar to the first chapter of Sun Tzu’s Art of War
with the corresponding degree of similarity. Then
follow seven tables containing the results from the
application of different Boolean operations. This
corresponds to the case when the system tries to judge
whether a particular document is relevant to the user.
Consider the user’s clickstream activity shows he is
interested in information common to both the
documents. The system needs to perform a Boolean
AND operation on the LSI vectors of those documents

and to produce a ranked document sort list in order to
choose the relevant documents. The results are shown
in the second table. The following two tables contain
the results of the application of two different
excluding operations: NOT and MINUS, whose
behavior has been discussed above. Then follow four
tables showing the results of the application of four
different types of OR operations for different values
of k (see above).
The experiments with the combined OR and AND
similarity measure search using different values for
the parameter k were among the most interesting ones.
Fig. 11 gives another view perspective on the results,
showing the distribution of the correlation coefficients
for all the 196 documents using a text from the Sun
Tzu’s Art of War and another one from the Egyptian
Book of the Dead. We can see again that the results
vary which suggests that we can obtain quite different
results by tuning the parameter k. In fact the sorted
order of the best matches returned by the query is
almost the same for all the cases.

Discussion

The results presented above show that the Boolean
operations proposed perform well and can be used
successfully in the meaning vectors construction by
using any kind of Boolean expressions. As have been
mentioned above, the correct application of the
Boolean operations is a key point in the development
of the dynamic user profile.
The operations can be useful also in the construction
of a natural language query system giving the users
the opportunity to combine any kind of natural
language queries. After the ranked list has been

Figure 11. OR similarity. Correlation coefficients distribution

returned the user can provide the system a relevance
feedback by pointing out some of the documents as
relevant or non-relevant to his or her query. The
system will then provide a second ranked list of
documents by combining the vector of the user query
with the vectors of those documents using the
appropriate extended Boolean operations, like this is
done at http://lsi.research.telcordia.com/lsi-
bin/lsiQuery.

Conclusion

We think the application of dynamic vector-based
user profiles by means of the extended Boolean
operations presented above is very promising.
We continue our work by experimenting with
different kinds of extended Boolean similarity
functions and their behavior on different kind of
corpuses. A research has been started whose goal is
the application of methods for meaning vector
creation, different from LSI, because the latter cannot
be easily scaled to extremely large quantity of
documents.
The next stage is the design of a clickstream activity
capture and a sophisticated analyzer of the user
behavior in order to move further towards the creation
of the personalized Web site.

Z:\>new_doc suntzu1.txt

SUNTZU1.TXT: 1.00000000
SUNTZU10.TXT: 0.96812259
SUNTZU8.TXT: 0.96652910

SUNTZU11.TXT: 0.93972055
SUNTZU3.TXT: 0.93858290
SUNTZU9.TXT: 0.93604917
SUNTZU5.TXT: 0.93365826
SUNTZU2.TXT: 0.93192063
SUNTZU6.TXT: 0.93054489
SUNTZU4.TXT: 0.92828905
SUNTZU7.TXT: 0.92593509

CONF2.TXT: 0.91226262
SUNTZU13.TXT: 0.91114359
SUNTZU12.TXT: 0.85816521

CONF1.TXT: 0.82958573
CONF5.TXT: 0.78001097
CONF3.TXT: 0.75975322
CONF8.TXT: 0.75835731
CONF9.TXT: 0.74499495

PLNSENCA.HTM: 0.73306848
CONF7.TXT: 0.71974991
CONF4.TXT: 0.71070083

COMRULE.HTM: 0.68268537
CONF6.TXT: 0.68213084

APCTHOM.HTM: 0.65737315
TOMCNTND.HTM: 0.65597126
REPORTPL.HTM: 0.64527600
ACTPTNPL.HTM: 0.64414208
REPTPILT.HTM: 0.63537118

BKS.HTM: 0.63271447
CONSTITU.HTM: 0.60308042

...........................

Z:\>new_doc_bool
suntzu1.txt conf1.txt MINUS

SUNTZU1.TXT: 0.99999999
SUNTZU10.TXT: 0.84153095
SUNTZU8.TXT: 0.83314816
SUNTZU9.TXT: 0.79360580

SUNTZU11.TXT: 0.78726789
SUNTZU5.TXT: 0.78655673
SUNTZU3.TXT: 0.78331581
SUNTZU4.TXT: 0.77882682
SUNTZU7.TXT: 0.77748381
SUNTZU6.TXT: 0.77582141
SUNTZU2.TXT: 0.76678133

SUNTZU13.TXT: 0.70645429
SUNTZU12.TXT: 0.70273529
APCTHOM.HTM: 0.58777081

PLNSENCA.HTM: 0.58703387
ACTPTNPL.HTM: 0.58462459
REPORTPL.HTM: 0.58416049
REPTPILT.HTM: 0.57699034
COMRULE.HTM: 0.57378553

CONSTITU.HTM: 0.56559168
BKS.HTM: 0.56207412

REVJON2.HTM: 0.56055113
ACTMAT.HTM: 0.55897387

ACTPHIL.HTM: 0.55627470
APCPETE.HTM: 0.55580713

MARTBART.HTM: 0.55501092
TOMCNTND.HTM: 0.55428700

YASNAE.TXT: 0.55068365
REVSTEV.HTM: 0.55059070

AVENGSAV.HTM: 0.54946890
ACTANM.HTM: 0.54908653

...........................

Z:\>new_doc_bool
suntzu1.txt conf1.txt NOT

SUNTZU1.TXT: 1.00000000
SUNTZU10.TXT: 0.98252302
SUNTZU8.TXT: 0.98189181

SUNTZU11.TXT: 0.96651472
SUNTZU3.TXT: 0.96605616
SUNTZU9.TXT: 0.96306676
SUNTZU2.TXT: 0.96280884
SUNTZU5.TXT: 0.96209854
SUNTZU6.TXT: 0.96099163
SUNTZU4.TXT: 0.95893613
SUNTZU7.TXT: 0.95728178

SUNTZU13.TXT: 0.95335401
SUNTZU12.TXT: 0.91590555
PLNSENCA.HTM: 0.84335849
COMRULE.HTM: 0.80440870

TOMCNTND.HTM: 0.78884876
APCTHOM.HTM: 0.77033574

BKS.HTM: 0.76180693
REPORTPL.HTM: 0.75937276
ACTPTNPL.HTM: 0.75767365
REPTPILT.HTM: 0.75380184
FGAPCPT.HTM: 0.73594581

MARTBART.HTM: 0.73030361
CONSTITU.HTM: 0.72582505
MYSTERY.HTM: 0.72447034

ACTJNTHE.HTM: 0.71790911
APCJMS1.HTM: 0.71604588
ACTMAT.HTM: 0.71421530

REVSTEV.HTM: 0.71192762
NAGHAM6.HTM: 0.70218790

DEATHPLT.HTM: 0.70177880
...........................

Z:\>new_doc_bool
suntzu1.txt conf1.txt AND

CONF2.TXT: 0.93506011
SUNTZU1.TXT: 0.91479286

CONF1.TXT: 0.91479286
SUNTZU13.TXT: 0.90802675
SUNTZU8.TXT: 0.90745685

SUNTZU10.TXT: 0.89604427
SUNTZU2.TXT: 0.88122315
SUNTZU3.TXT: 0.87397853

SUNTZU11.TXT: 0.86994911
CONF5.TXT: 0.85956386

SUNTZU6.TXT: 0.85553152
CONF3.TXT: 0.85421266
CONF8.TXT: 0.84673427

SUNTZU5.TXT: 0.84201628
CONF9.TXT: 0.83800404

SUNTZU4.TXT: 0.83730812
SUNTZU9.TXT: 0.83378707
SUNTZU7.TXT: 0.82986823

CONF7.TXT: 0.82701671
CONF4.TXT: 0.80956085
CONF6.TXT: 0.78754286

SUNTZU12.TXT: 0.77238908
PLNSENCA.HTM: 0.71858016
COMRULE.HTM: 0.65251025

TOMCNTND.HTM: 0.64263567
SENTANCE.HTM: 0.60424740

BKS.HTM: 0.58734007
APCTHOM.HTM: 0.57461640
FGAPCPT.HTM: 0.57040597
GOSMARY.HTM: 0.56554976
MYSTERY.HTM: 0.56087279

...........................

Z:\>new_doc_bool
suntzu1.txt conf1.txt OR 0

SUNTZU1.TXT: 0.99999997
CONF1.TXT: 0.99999993
CONF2.TXT: 0.82317039

SUNTZU8.TXT: 0.72128584
SUNTZU10.TXT: 0.69019913
SUNTZU13.TXT: 0.68069817
SUNTZU2.TXT: 0.61376306
SUNTZU3.TXT: 0.60314637

SUNTZU11.TXT: 0.59609037
CONF5.TXT: 0.57673504
CONF3.TXT: 0.57598572

SUNTZU6.TXT: 0.56392683
CONF8.TXT: 0.55314244

SUNTZU5.TXT: 0.54518708
CONF9.TXT: 0.53777290

SUNTZU9.TXT: 0.53540358
SUNTZU4.TXT: 0.53511372

CONF7.TXT: 0.52538150
SUNTZU7.TXT: 0.52381202

CONF4.TXT: 0.49115954
CONF6.TXT: 0.46332613

SUNTZU12.TXT: 0.44084160
PLNSENCA.HTM: 0.38921508
COMRULE.HTM: 0.35047941

TOMCNTND.HTM: 0.34533693
SENTANCE.HTM: 0.32821505

BKS.HTM: 0.32180010
APCTHOM.HTM: 0.31799264
FGAPCPT.HTM: 0.31500315
GOSMARY.HTM: 0.31317246

REPORTPL.HTM: 0.31256336
...........................

Z:\>new_doc_bool suntzu1.txt
conf1.txt OR 0.5

SUNTZU1.TXT: 0.99999999
 CONF1.TXT: 0.99999996
 CONF2.TXT: 0.89051399
 SUNTZU8.TXT: 0.84390747
 SUNTZU10.TXT: 0.82916086
 SUNTZU13.TXT: 0.79592088
 SUNTZU2.TXT: 0.77284184
 SUNTZU3.TXT: 0.77086463
 SUNTZU11.TXT: 0.76790546
 CONF3.TXT: 0.76232891
 CONF5.TXT: 0.75792590
 SUNTZU6.TXT: 0.74723586
 CONF8.TXT: 0.74412684
 SUNTZU5.TXT: 0.73942267
 SUNTZU9.TXT: 0.73572637
 CONF9.TXT: 0.73439302
 SUNTZU4.TXT: 0.73170138
 CONF7.TXT: 0.72983250
 SUNTZU7.TXT: 0.72487356
 CONF4.TXT: 0.69979020
 CONF6.TXT: 0.67814051
 SUNTZU12.TXT: 0.64950340
 PLNSENCA.HTM: 0.56114178
 COMRULE.HTM: 0.51658239
 TOMCNTND.HTM: 0.50065410
 APCTHOM.HTM: 0.48768289
 REPORTPL.HTM: 0.47891968
 ACTPTNPL.HTM: 0.47778194
 BKS.HTM: 0.47725729
 SENTANCE.HTM: 0.47653668
 REPTPILT.HTM: 0.47355391
...........................

Z:\>new_doc_bool suntzu1.txt
conf1.txt OR 0.75

SUNTZU1.TXT: 0.99999999
 CONF1.TXT: 0.99999998
 CONF2.TXT: 0.92418579
 SUNTZU8.TXT: 0.90521829
 SUNTZU10.TXT: 0.89864172
 CONF3.TXT: 0.85550050
 SUNTZU3.TXT: 0.85472377
 SUNTZU11.TXT: 0.85381300
 SUNTZU13.TXT: 0.85353224
 SUNTZU2.TXT: 0.85238124
 CONF5.TXT: 0.84852132
 CONF8.TXT: 0.83961903
 SUNTZU6.TXT: 0.83889037
 SUNTZU5.TXT: 0.83654047
 SUNTZU9.TXT: 0.83588777
 CONF9.TXT: 0.83270307
 CONF7.TXT: 0.83205800
 SUNTZU4.TXT: 0.82999522
 SUNTZU7.TXT: 0.82540432
 CONF4.TXT: 0.80410553
 CONF6.TXT: 0.78554770
 SUNTZU12.TXT: 0.75383431
 PLNSENCA.HTM: 0.64710513
 COMRULE.HTM: 0.59963388
 TOMCNTND.HTM: 0.57831268
 APCTHOM.HTM: 0.57252802
 REPORTPL.HTM: 0.56209784
 ACTPTNPL.HTM: 0.56096201
 BKS.HTM: 0.55498588
 REPTPILT.HTM: 0.55446255
 SENTANCE.HTM: 0.55069749
...........................

Z:\>new_doc_bool suntzu1.txt
conf1.txt OR 1

SUNTZU1.TXT: 1.00000000
 CONF1.TXT: 1.00000000
 SUNTZU10.TXT: 0.96812259
 SUNTZU8.TXT: 0.96652910
 CONF2.TXT: 0.95785760
 CONF3.TXT: 0.94867210
 SUNTZU11.TXT: 0.93972055
 CONF5.TXT: 0.93911675
 SUNTZU3.TXT: 0.93858290
 SUNTZU9.TXT: 0.93604917
 CONF8.TXT: 0.93511123
 CONF7.TXT: 0.93428351
 SUNTZU5.TXT: 0.93365826
 SUNTZU2.TXT: 0.93192063
 CONF9.TXT: 0.93101313
 SUNTZU6.TXT: 0.93054489
 SUNTZU4.TXT: 0.92828905
 SUNTZU7.TXT: 0.92593509
 SUNTZU13.TXT: 0.91114359
 CONF4.TXT: 0.90842086
 CONF6.TXT: 0.89295488
 SUNTZU12.TXT: 0.85816521
 PLNSENCA.HTM: 0.73306848
 COMRULE.HTM: 0.68268537
 APCTHOM.HTM: 0.65737315
 TOMCNTND.HTM: 0.65597126
 REPORTPL.HTM: 0.64527600
 ACTPTNPL.HTM: 0.64414208
 REPTPILT.HTM: 0.63537118
 BKS.HTM: 0.63271447
 SENTANCE.HTM: 0.62485831
...........................

References

[1] Aldenderfer M., Blashfield R. Cluster Analysis. A
SAGE University Paper. Sage Publications. 1984.

[2] Anick P. and Vaithyanathan S. Exploiting
clustering and phrases for context-based information
retrieval. Proceedings of the 20th annual international
ACM SIGIR conference on Research and
development in information retrieval pp. 314 - 323.
July 27 - 31, 1997, Philadelphia, PA USA

[3] Bates M. Subject Access in Online Catalogs: A
Design Model.
Journal of the American Society for Information
Sciences, Number 37, pp. 357-376, 1986.

[4] Berry M., Do T., O'Brien G., Krishna V., and
Sowmini Varadhan, SVDPACKC (Version 1.0) User's
Guide.
April 1993.

[5] Brin S., Page L., The Anatomy of Large Scale
Search Engine, Stanford University, June 1998.

[6] Caid W., Carleton J. Visualization of information
using graphical representations of context vector
based relationships and attributes. United States
Patent 6,794,178. Aug. 11, 1998.

[7] Deerwester S., Dumais S., Furnas G., Laundauer,
T. and Harshman R.. Indexing by Latent Semantic
Analysis. Journal of the American Society for
Information Sciences, Number 41, pp. 391-47, 1990.

[8] Dumais, S. T. Using LSI for information filtering:
TREC-3 experiments. In: D. Harman (Ed.), The Third
Text REtrieval Conference (TREC3) National
Institute of Standards and Technology Special
Publication , in press 1995.

[9] Dumais, S. T. (1997) Using LSI for Information
Retrieval, Information Filtering, and Other Things.
Talk at Cognitive Technology Workshop, April 4-5,
1997.

[10] Foltz, P. W. and Dumais, S. T. (1992)
Personalized information delivery: An analysis of
information filtering methods. Communications of the
ACM, 35(12), 51-60. Experiment using LSI for
information filtering.

[11] Furnas G., Landauer T., Gomez L. and Dumais
T., Statistical semantics: Analysis of the Potential

Performance of Keyword Information Systems. Bell
Syst.Tech.J., 62, Number 6, pp. 1753-1806, 1986.

[12] Harman, D. An experimental study of the factors
important in document ranking. In Association for
Computing Machinery Conference on Research and
Development in Information Retrieval . Association
for Computing Machinery. 1986.

[13] Kimball R. Clicking with your customer.
Warehouse Architect, Number 1, Volume 2, January
05, 1999.

[14] Kimball R. The Data Webhouse Has No Center.
Warehouse Architect, Number 10, Volume 2, July 13,
1999.

[15] Kimball R. The Special Dimension of the
Clickstream. Data Webhouse, Number 2, Volume 3,
January 20, 2000.

[16] Laudauer T., Foltz P., Laham D. Introduction to
Latent Semantic Analysis. Discourse Processes, 25,
pp. 259-284.

[17] Marchionini G. Interfaces for End-User
Interfaces Seeking. Journal of the American Society
for Information Science, 43(2): 156-163, 1992.

[18] Oard, D. Adaptive Vector Space Text Filtering
for Monolingual and Cross-Language Applications,
Department of Electrical Engineering, Univ. of
Maryland, August 1996.

[19] Stairmand M. A. Textual context analysis for
information retrieval. Proceedings of the 20th annual
international ACM SIGIR conference on Research
and development in information retrieval pp. 140 -
147. July 27 - 31, 1997, Philadelphia, PA USA

[20] Vlajic N., Card H. An adaptive Neural Network
Approach to Hypertext Clustering. University of
Manitoba. 1998

[21] Winter R. More Than You Hoped For. Scalable
Systems. Volume 3, Number 6, April 10, 2000.

[22] LSA 1990-99, http://lsa.colorado.edu
[23] Religions, http://davidwiley.com/religion.html
[24] The Bible,
http://www.bible.org/netbible/download.htm
[25] The Quran, http://www.usc.edu/dept/MSA/quran/

