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Abstract. The paper discusses the potential of the usage of Extended Boolean operations for 
personalized information delivery on the Internet based on semantic vector representation 
models. The final goal is the design of an e-commerce portal tracking user’s clickstream 
activity and purchases history in order to offer them personalized information. The emphasis 
is put on the introduction of dynamic composite user profiles constructed by means of 
extended Boolean operations. The basic binary Boolean operations such as OR, AND and 
NOT (AND-NOT) and their combinations have been introduced and implemented in variety 
of ways. An evaluation is presented based on the classic Latent Semantic Indexing method for 
information retrieval using a text corpus of religious and sacred texts.  

 



Introduction 

The pre-Internet era imperative stated that more data 
means better chance to find the information needed. 
Internet has imposed new standards and new way of 
thinking. In 1994 the World Wide Web Worm 
received an average of about 1500 queries per day, in 
November 1997 only one of the top four commercial 
search engines finds itself (returns its own search page 
in response to its name in the top ten results) and 
nowadays the AltaVista search engine serves 
hundreds of millions queries per day. With the 
enormous growth of the information available on the 
Web the goal has changed and the main efforts are 
directed towards the limitation of information 
presented to the user. ([5]) 
The first that felt the problem were of course the 
search engines and they offered the users several 
possibilities for advanced query refinements. 
Unfortunately their usage remained highly limited, 
since as Marchionini argued: “End users want to 
achieve their goals with a minimum of cognitive load 
and a maximum of enjoyment. …humans seek the 
path of least cognitive resistance and prefer 
recognition tasks to recall tasks; most people will 
trade time to minimize complexity”. [17] 
The problem of the relevance of information 
presented to the users was well understood by the 
commercial Internet sites. When people find some 
magazine irrelevant to their information expectations 
they simply stop to buy it. It is the same with the Web 
sites: if the information presented does not meet the 
customers’ needs they never return there.  
The limited volume of the magazine does not permit 
to include everything people would find relevant and 
they tend to specialize in a particular area. People buy 
only those magazines that are relevant to their specific 
interests. The Web sites and portals are a different 
case because there are no so strong limitations of the 
amount of information to be published, as is the case 
with the magazines. The biggest Internet portals like 
those of Yahoo!, MSN or Netscape can offer almost 
all a customer may need. The problem is how to 
organize the site in order to help the users find what 
they are actually looking for.  
 
The Idea of the User Profile 

The most valuable decision is the development of a 
dynamic model of the interests for the specific user. 
The first attempt in the development of user’s profile 
was asking the user to enter some words that best 
describe his or her interests. Another possibility is the 
selection of the relevant ones among a set of articles. 

Each of these articles can be assigned a list of key 
words that will be used to limit the information 
presented to the user. For example, a personalized 
search engine could return information only from the 
field of interest to the user. The same way a well-
personalized Web site changes dynamically its 
content in order to present to the user only relevant 
information, news or advertisements, according to the 
previously created profile. ([10]) 
Asking explicitly the users for some kind of relevance 
feedback may not always be the best way to create 
their profiles. This is especially the case when using 
key words. As Furnas, Landauer, Gomez and Dumais 
have shown in [11], people use the same words to 
describe the same subject in 10-20% of the time (see 
also [4]). The relevance feedback when using whole 
articles may not be correct too, because of the 
influence of some subjective factors like novelty, 
informativeness or familiarity to the user. Some 
sites/portals offer the customers the opportunity to 
receive a free “passport”. The users are asked to fill a 
form and answer a set of common questions that will 
be used as a primary source for the construction of 
their profiles. This may be of great importance and 
can lead to significant improvements.  
The problem is that people tend to get annoyed when 
are asked to do something in order to help the system. 
That is why several business sites/portals developed 
specialized mechanisms for automatic user’s profile 
construction. Some of the recent studies and 
applications in the field include the automatic tracking 
and recording of the user’s activity when browsing on 
the site: e.g. page visited, button clicked, hyper link 
followed, search query entered etc. The information 
collected this way is called clickstream and is stored 
in specially designed clickstream data marts and Data 
Webhouses. Thus, the Web site/portal retains a full 
history of the user’s activity that permits the 
construction of more effective and objective profile. 
([13,14,15,21]) 
For almost all the cases the user profile has a dynamic 
character and changes over time since new 
information becomes available. The general sources 
of additional information are the raw details of the 
recorded user activity: the clickstream. Most of the 
systems use a vector representation of the user profile. 
This is very convenient and, as we will show later, 
simplifies its creation, support and usage. Although 
there are several different techniques for vector 
generation of the type described, we have chosen the 
Latent Semantic Indexing for several reasons the 
primary of which is that it is a well-studied classic 
method that will allow us to concentrate on the 



specific details of profile creation and usage we want 
to study. 
 
Latent Semantic Indexing 
The Latent Semantic Indexing (LSI) is a powerful 
statistical technique for fully automatic indexing and 
retrieval of information. LSI is generally applied to 
texts and represents a two-stage process that consists 
of (see [7], [9], [16] for details): 

• off-line construction of document index, and 
• on-line respond to user queries. 

The off-line part of the process is the training part 
when LSI creates its index. First a large word-to-
document matrix X is constructed where the cell (i,j)
contains the frequencies of occurrence of the i-th 
word into the j-th document. After that, a singular 
value decomposition (SVD) is performed which gives 
as a result three matrices D, T (both orthogonal) and S
(diagonal), such that X=DSTt. Then all three matrices 
are truncated in such a way that when we multiply the 
truncated ones D′, S′ and T′ we get a new matrix X′
which has the same dimensionalities as X and is the 
least-squares best fit approximation of X. This results 
in the compression of the original space in a much 
smaller one where we have just a few number of 
significant factors (usually 50-400). Each document is 
then represented by a meaning vector of low 
dimensionality (e.g. 100). It is possible to perform a 
sophisticated SVD which speeds the process by 
directly finding the truncated matrices D′, S′ and T′
(see [4]). 
The on-line part of LSI receives the query (pseudo-
document) user typed and finds its corresponding 
vector into the document space constructed by the off-
line part using a standard LSI mechanism. Now we 
can measure the degree of similarity between the 
query and the indexed documents by simply 
calculating the cosine between their corresponding 
vectors. Other possibilities include the usage of the 
angle, Euclidean distances between the normalized 
document vectors, Manhattan, Chebishov’s and other 
measures. 
 

Extended Boolean Operations 

We return now to the automatic creation of vector 
representation of the user’s profiles. Consider an e-
commerce portal tracking users’ clickstream activity 
as have been discussed above. The information 
collected can be used in variety of ways including 
analysis of the quality of the Web site structure and 
organization, etc. ([13]) There are several things we 

are interested in when constructing the users’ profiles 
among which the most important are: 

• Which sections/pages on the site the customer 
visits most frequently? What do they content? 

• Which pages are “session killers” for our 
customer? 

• How long time does the customer spend on 
the site? 

• Who is our customer? How often he or she 
visits the site?  

• Has the customer purchased something and 
what, if any? What kind of products? 

• Is it a complaining customer that often returns 
back our products? 

Having collected information like this will allow us to 
create a sophisticated high quality user profile that 
will permit offering him or her personalized news, 
advertisements, banners etc. We would like to create a 
profile vector that is closely aligned to the vectors of 
the pages the user is interested in and is far from those 
which seem to be uninteresting. A page of interest for 
the user may be a page where he goes often or spends 
a long time. The longer the user stays on the page, the 
more relevant it may be to his or her interests. On the 
other hand we must beware not taking too seriously 
the extremely long times (the user has just left the 
browser open) giving at the same time higher weights 
for the pages related to the user’s purchases, if any. 
So, we would like to combine the vectors of the 
relevant pages, weighted according to the frequency 
of the visits and the duration of the time spent there, 
in order to obtain the profile vector. This implies the 
need for a weighted OR similarity measure. We 
would like also to exclude the pages that seem to be 
strongly uninteresting for the user: e.g. those where he 
or she (often) cancels the session or those, we know 
he or she is not interested in, according to a relevance 
feedback, possibly taken from the user “passport” 
registration information supplied. This implies the 
need for excluding NOT (MINUS) Boolean operation.  
These examples show that the extended Boolean 
operations play a major role in the process of user’s 
profiles creation.  
Another possibility is to design a composite profile by 
keeping several different vectors whose weighted 
combination gives the profile vector. This results in 
improved performance since we can manage the 
different vectors the profile is built of separately and 
combine (some of) them only when needed. This 
allows the creation of a dynamic profile that may be 
recalculated when needed and with changed weights. 
For example, we may like to drop some elements of 



the user profile that are no longer relevant (because 
are old), or at least reduce their weights.  
Consider we have collected a complete history of the 
customers’ purchases and clickstream activity, and 
want to send the users several advertisements by e-
mail or show them on the Web when browsing the 
site/portal. We have already developed LSI index 
based on the text description of each product. We can 
think of the purchases/clicks as query components and 
of the advertisement as a new document in the same 
space. We need some kind of similarity function that 
will give us a measure of the similarity between our 
advertisements and the user’s profile. Let us define d1,
d2, …, dn as distances (in LSI sense) between the ad 
and the n components of the query. The classic LSI 
algorithm calculates the cosines between the vectors 
in order to find the degree of their similarity. Most of 
the similarity measures for the Boolean operations we 
propose below are based on Euclidean distances, 
although we can use some other distances (angle, 
Manhattan distance, Chebishov’s distance, power 
distance, etc.). It is important to note that we must 
first normalize the vectors before calculating 
Euclidean distances. All Boolean operations proposed 
return a value between 0 and 1. Almost the same 
results can be obtained when using the classic cosines 
but for some functions it is difficult to fit the values 
returned in the interval [0,1]. We have experimented a 
lot trying a large quantity of measures and found that 
the usage of Euclidean distance seems to be the most 
appropriate. 

 
Figure 1. OR similarity for two-component query 

 
There are several similarity measures we have 
experimented with:  
• OR-similarity measure. This measure depends 

only on the minimal distance between the 
document and the query components and has the 
following general representation: 
Sor = f(min(g(d1),g(d2),…,g(dn))), where f(x) and 
g(x) are some one-argument functions. 

In case we have more information for the query 
we can add weights to the query components and 
modify g(x) to g(x, w). So the formula is: 
Sor = f(min(g(d1,w1),g(d2,w2),…,g(dn,wn)))  
OR similarity measure has well separated picks at 
the query components vectors. 
Example: The similarity measure for two- and 
three-component query,  
f(x) = 1/(1+x)
g(x) = x
are shown on figures 1 and 2.  

 

Figure 2. OR similarity for three-component query 
 

• AND-similarity measure. This measure depends 
only on the sum of distances between the 
document and query components. It has the 
following general representation: 
Sor = f(g(d1)+g(d2)+…+g(dn))), where f(x) and g(x)
are some one-argument functions. 
And again if we have more information for the 
query and we can add weights to the query 
components and modify g(x) to g(x, w). In this 
case the formula is: 
Sor = f((g(d1,w1) + g(d2,w2) + … + g(dn,wn))) 
Usually this measure can be thought of as a 
superposition of distinct similarity measures of 
the query components. 
Example: The similarity measure for two- and 
three-component query,  
f(x) = 1/(1+x)
g(x) = x
are shown on figures 3 and 4.  

 
• Combination of the previous two (AND-OR).

This similarity measure is a combination between 
the previous two. 
Sand-or = f(Sand, Sor)
Example: We can use linear combination between 
Sor and Sand measures. 

S = k.Sor + (1–k).Sand , where k is constant and 
0≤k≤1. 



Figure 3. AND similarity for two-component query 
 

Figure 4. AND similarity for three-component query 
 

Figure 3 shows the two component query results 
for k = 0.5. We still have two distinct parts like 
the OR-similarity function but higher values in 
the middle region between them just like the 
AND-similarity function. 
Figures 5 and 6 show the results for a two- and 
three component queries with k = 0.5 Figure 7 is 
an example of weighed combined similarity 
measure. 
 

• MINUS and Binary NOT (AND-NOT)-
similarity measure. In case we want to exclude a 
vector we can apply two different similarity 
measures: MINUS and NOT. For the MINUS 
similarity measure, if the vector considered is 
more similar to the exclude vector it will receive a 
similarity measure of 0. (see the second clause 
below) Otherwise we return a the similarity 
measure that takes in account the distance to the 
include vector only. 
Example: 
We can use the following MINUS-measure: 

Snot = d1, when d1<d2, and 
Snot = 0, else. 

The result is shown on figure 8. 

Figure 5. Combined similarity for 2 comp. query, k=0.5 
 

Figure 6. Combined similarity for 3 comp. query, k=0.5  
 

The problem with this measure is that it takes in 
account d2 only when deciding whether to cut the 
value. A more sophisticated implementation may 
be used: the NOT (AND-NOT) similarity 
measure. If the document is more similar to the 
exclude document text it will receive a similarity 
measure of 0, but otherwise we return a similarity 
measure between 0 and 1 that takes in account the 
distances to both documents. 
Example: 
We can use the following NOT-measure: 

Snot = 1 – d1 / (1 + d2), when d1<d2, and 
Snot = 0, else. 

The result is shown on figure 9. 

Figure 7. Weighted combination for 2 comp. query, k=0.5 



Figure 8. MINUS similarity measure 

 

Figure 9. NOT (AND-NOT) similarity measure 

 

Application to Religious and Sacred Texts 

The first step toward the construction of the dynamic 
user profile is development of the appropriate 
extended Boolean operations. We have experimented 
the performance of the Extended Boolean Operations 
presented above on a large number of different 
corpuses containing thousands of documents by 
thousands of words and hundreds of megabytes.  
We will demonstrate how the functions we introduced 
above work on a small corpus of religious and sacred 
texts we found at: 
http://davidwiley.com/religion.html. We selected 196 
different religious and sacred texts from 14 
categories: apocrypha (acts, apocalypses, gospels, 
writings), Buddhism, Confucianism, Dead Sea scripts, 
The Egyptian Book of Dead, Sun Tzu: The Art of 
War, Zoroastrianism, The Bible (Old and New 
Testaments), The Quran and The Book of Mormons. 
The experiments were made in a 30 dimensional 
space (see Fig.1) with a preliminary to SVD 
replacement of the frequencies in X (196 documents ×
11451 words) with their logarithms. Fig. 10 illustrates 

the inter-document similarities given by the 
correlation matrix (196×196), shown in 5 different 
colors for the five correlation intervals: 

• 87,5-100%, black color; 
• 75-87,5%, dark gray; 
• 62,5-75%, gray; 
• 50-62,5%, light gray; 
• 0-50%, white. 

The dark rectangles in the main diagonal show the 
high correlation between texts belonging to the same 
religion. For example: the black rectangle from the 
bottom right corner contains texts from the Book of 
Mormons. To the left and up on the main diagonal can 
be found the Quran, then the Old Testament (The 
Bible), then come the Zoroastrian texts, The New 
Testament (The Bible), the Sun Tzu’s Art of War, the 
Egyptian Book of the Dead and so forth. And the 
smooth rectangle in the upper left corner shows the 
relatively high similarity between all kinds of 
apocrypha present. We see for example that The Book 
of Mormons is more correlated to the New Testament 
than to The Old Testament. 
 

Some of the religious texts are too big (like the Bible 
or the Quran) and we have selected just a part of 
them. The corpus of texts selected for our experiments 
on the behavior of the different Boolean operations 
we will work on is about 5,5 MB and is well 
structured: there are well-separated clusters. The clear 
rectangles we can see on Fig. 10 correspond to texts 
from different religions, which made the analysis of 
the correctness of the results we obtained easier.  

Figure 10. Correlation between religious texts (196 × 196)  
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We performed several different experiments that can 
be separated in two general classes: “practical” and 
“theoretical”. The “practical” experiments include the 
composition of two or more different queries and their 
combination with Boolean operations. The second 
class of “theoretical” experiments includes the choice 
of two or more texts from the same space and 
performing queries using Boolean operations (OR, 
AND and NOT). We think that the second class 
illustrates better the general idea and the results we 
obtained.  
We developed several specialized software command 
line tools supporting both the on-line and off-line LSI 
stages using the standard SVDPACKC routines for 
the singular value decomposition (see [4]). A LSI 
based natural language query search engine has been 
developed based on these tools and exposed on the 
Web at (http://self reference withdrawn).  
Below are presented eight different tables that contain 
experimental results obtained for two example texts 
from the corpus belonging to different well-separated 
clusters (religions): the first chapter of the Sun Tzu’s 
Art of War (suntzu1.txt) and the first chapter of the 
Confucianism religious texts (conf1.txt). The first 
table contains the ranked top list of the documents 
similar to the first chapter of Sun Tzu’s Art of War 
with the corresponding degree of similarity. Then 
follow seven tables containing the results from the 
application of different Boolean operations. This 
corresponds to the case when the system tries to judge 
whether a particular document is relevant to the user. 
Consider the user’s clickstream activity shows he is 
interested in information common to both the 
documents. The system needs to perform a Boolean 
AND operation on the LSI vectors of those documents 

and to produce a ranked document sort list in order to 
choose the relevant documents. The results are shown 
in the second table. The following two tables contain 
the results of the application of two different 
excluding operations: NOT and MINUS, whose 
behavior has been discussed above. Then follow four 
tables showing the results of the application of four 
different types of OR operations for different values 
of k (see above).  
The experiments with the combined OR and AND 
similarity measure search using different values for 
the parameter k were among the most interesting ones.  
Fig. 11 gives another view perspective on the results, 
showing the distribution of the correlation coefficients 
for all the 196 documents using a text from the Sun 
Tzu’s Art of War and another one from the Egyptian 
Book of the Dead. We can see again that the results 
vary which suggests that we can obtain quite different 
results by tuning the parameter k. In fact the sorted 
order of the best matches returned by the query is 
almost the same for all the cases. 
 
Discussion 

The results presented above show that the Boolean 
operations proposed perform well and can be used 
successfully in the meaning vectors construction by 
using any kind of Boolean expressions. As have been 
mentioned above, the correct application of the 
Boolean operations is a key point in the development 
of the dynamic user profile.  
The operations can be useful also in the construction 
of a natural language query system giving the users 
the opportunity to combine any kind of natural 
language queries. After the ranked list has been 

Figure 11. OR similarity. Correlation coefficients distribution 



returned the user can provide the system a relevance 
feedback by pointing out some of the documents as 
relevant or non-relevant to his or her query. The 
system will then provide a second ranked list of 
documents by combining the vector of the user query 
with the vectors of those documents using the 
appropriate extended Boolean operations, like this is 
done at http://lsi.research.telcordia.com/lsi-
bin/lsiQuery. 
 
Conclusion 

We think the application of dynamic vector-based 
user profiles by means of the extended Boolean 
operations presented above is very promising.  
We continue our work by experimenting with 
different kinds of extended Boolean similarity 
functions and their behavior on different kind of 
corpuses. A research has been started whose goal is 
the application of methods for meaning vector 
creation, different from LSI, because the latter cannot 
be easily scaled to extremely large quantity of 
documents. 
The next stage is the design of a clickstream activity 
capture and a sophisticated analyzer of the user 
behavior in order to move further towards the creation 
of the personalized Web site. 



Z:\>new_doc suntzu1.txt 
 

SUNTZU1.TXT: 1.00000000
SUNTZU10.TXT: 0.96812259
SUNTZU8.TXT: 0.96652910

SUNTZU11.TXT: 0.93972055
SUNTZU3.TXT: 0.93858290
SUNTZU9.TXT: 0.93604917
SUNTZU5.TXT: 0.93365826
SUNTZU2.TXT: 0.93192063
SUNTZU6.TXT: 0.93054489
SUNTZU4.TXT: 0.92828905
SUNTZU7.TXT: 0.92593509

CONF2.TXT: 0.91226262
SUNTZU13.TXT: 0.91114359
SUNTZU12.TXT: 0.85816521

CONF1.TXT: 0.82958573
CONF5.TXT: 0.78001097
CONF3.TXT: 0.75975322
CONF8.TXT: 0.75835731
CONF9.TXT: 0.74499495

PLNSENCA.HTM: 0.73306848
CONF7.TXT: 0.71974991
CONF4.TXT: 0.71070083

COMRULE.HTM: 0.68268537
CONF6.TXT: 0.68213084

APCTHOM.HTM: 0.65737315
TOMCNTND.HTM: 0.65597126
REPORTPL.HTM: 0.64527600
ACTPTNPL.HTM: 0.64414208
REPTPILT.HTM: 0.63537118

BKS.HTM: 0.63271447
CONSTITU.HTM: 0.60308042

...........................

Z:\>new_doc_bool  
suntzu1.txt conf1.txt MINUS

SUNTZU1.TXT: 0.99999999
SUNTZU10.TXT: 0.84153095
SUNTZU8.TXT: 0.83314816
SUNTZU9.TXT: 0.79360580

SUNTZU11.TXT: 0.78726789
SUNTZU5.TXT: 0.78655673
SUNTZU3.TXT: 0.78331581
SUNTZU4.TXT: 0.77882682
SUNTZU7.TXT: 0.77748381
SUNTZU6.TXT: 0.77582141
SUNTZU2.TXT: 0.76678133

SUNTZU13.TXT: 0.70645429
SUNTZU12.TXT: 0.70273529
APCTHOM.HTM: 0.58777081

PLNSENCA.HTM: 0.58703387
ACTPTNPL.HTM: 0.58462459
REPORTPL.HTM: 0.58416049
REPTPILT.HTM: 0.57699034
COMRULE.HTM: 0.57378553

CONSTITU.HTM: 0.56559168
BKS.HTM: 0.56207412

REVJON2.HTM: 0.56055113
ACTMAT.HTM: 0.55897387

ACTPHIL.HTM: 0.55627470
APCPETE.HTM: 0.55580713

MARTBART.HTM: 0.55501092
TOMCNTND.HTM: 0.55428700

YASNAE.TXT: 0.55068365
REVSTEV.HTM: 0.55059070

AVENGSAV.HTM: 0.54946890
ACTANM.HTM: 0.54908653

...........................

Z:\>new_doc_bool 
suntzu1.txt conf1.txt NOT 
 

SUNTZU1.TXT: 1.00000000
SUNTZU10.TXT: 0.98252302
SUNTZU8.TXT: 0.98189181

SUNTZU11.TXT: 0.96651472
SUNTZU3.TXT: 0.96605616
SUNTZU9.TXT: 0.96306676
SUNTZU2.TXT: 0.96280884
SUNTZU5.TXT: 0.96209854
SUNTZU6.TXT: 0.96099163
SUNTZU4.TXT: 0.95893613
SUNTZU7.TXT: 0.95728178

SUNTZU13.TXT: 0.95335401
SUNTZU12.TXT: 0.91590555
PLNSENCA.HTM: 0.84335849
COMRULE.HTM: 0.80440870

TOMCNTND.HTM: 0.78884876
APCTHOM.HTM: 0.77033574

BKS.HTM: 0.76180693
REPORTPL.HTM: 0.75937276
ACTPTNPL.HTM: 0.75767365
REPTPILT.HTM: 0.75380184
FGAPCPT.HTM: 0.73594581

MARTBART.HTM: 0.73030361
CONSTITU.HTM: 0.72582505
MYSTERY.HTM: 0.72447034

ACTJNTHE.HTM: 0.71790911
APCJMS1.HTM: 0.71604588
ACTMAT.HTM: 0.71421530

REVSTEV.HTM: 0.71192762
NAGHAM6.HTM: 0.70218790

DEATHPLT.HTM: 0.70177880
...........................

Z:\>new_doc_bool 
suntzu1.txt conf1.txt AND 
 

CONF2.TXT: 0.93506011
SUNTZU1.TXT: 0.91479286

CONF1.TXT: 0.91479286
SUNTZU13.TXT: 0.90802675
SUNTZU8.TXT: 0.90745685

SUNTZU10.TXT: 0.89604427
SUNTZU2.TXT: 0.88122315
SUNTZU3.TXT: 0.87397853

SUNTZU11.TXT: 0.86994911
CONF5.TXT: 0.85956386

SUNTZU6.TXT: 0.85553152
CONF3.TXT: 0.85421266
CONF8.TXT: 0.84673427

SUNTZU5.TXT: 0.84201628
CONF9.TXT: 0.83800404

SUNTZU4.TXT: 0.83730812
SUNTZU9.TXT: 0.83378707
SUNTZU7.TXT: 0.82986823

CONF7.TXT: 0.82701671
CONF4.TXT: 0.80956085
CONF6.TXT: 0.78754286

SUNTZU12.TXT: 0.77238908
PLNSENCA.HTM: 0.71858016
COMRULE.HTM: 0.65251025

TOMCNTND.HTM: 0.64263567
SENTANCE.HTM: 0.60424740

BKS.HTM: 0.58734007
APCTHOM.HTM: 0.57461640
FGAPCPT.HTM: 0.57040597
GOSMARY.HTM: 0.56554976
MYSTERY.HTM: 0.56087279

...........................

Z:\>new_doc_bool 
suntzu1.txt conf1.txt OR 0 
 

SUNTZU1.TXT: 0.99999997
CONF1.TXT: 0.99999993
CONF2.TXT: 0.82317039

SUNTZU8.TXT: 0.72128584
SUNTZU10.TXT: 0.69019913
SUNTZU13.TXT: 0.68069817
SUNTZU2.TXT: 0.61376306
SUNTZU3.TXT: 0.60314637

SUNTZU11.TXT: 0.59609037
CONF5.TXT: 0.57673504
CONF3.TXT: 0.57598572

SUNTZU6.TXT: 0.56392683
CONF8.TXT: 0.55314244

SUNTZU5.TXT: 0.54518708
CONF9.TXT: 0.53777290

SUNTZU9.TXT: 0.53540358
SUNTZU4.TXT: 0.53511372

CONF7.TXT: 0.52538150
SUNTZU7.TXT: 0.52381202

CONF4.TXT: 0.49115954
CONF6.TXT: 0.46332613

SUNTZU12.TXT: 0.44084160
PLNSENCA.HTM: 0.38921508
COMRULE.HTM: 0.35047941

TOMCNTND.HTM: 0.34533693
SENTANCE.HTM: 0.32821505

BKS.HTM: 0.32180010
APCTHOM.HTM: 0.31799264
FGAPCPT.HTM: 0.31500315
GOSMARY.HTM: 0.31317246

REPORTPL.HTM: 0.31256336
...........................

Z:\>new_doc_bool suntzu1.txt 
conf1.txt OR 0.5 
 

SUNTZU1.TXT: 0.99999999 
 CONF1.TXT: 0.99999996 
 CONF2.TXT: 0.89051399 
 SUNTZU8.TXT: 0.84390747 
 SUNTZU10.TXT: 0.82916086 
 SUNTZU13.TXT: 0.79592088 
 SUNTZU2.TXT: 0.77284184 
 SUNTZU3.TXT: 0.77086463 
 SUNTZU11.TXT: 0.76790546 
 CONF3.TXT: 0.76232891 
 CONF5.TXT: 0.75792590 
 SUNTZU6.TXT: 0.74723586 
 CONF8.TXT: 0.74412684 
 SUNTZU5.TXT: 0.73942267 
 SUNTZU9.TXT: 0.73572637 
 CONF9.TXT: 0.73439302 
 SUNTZU4.TXT: 0.73170138 
 CONF7.TXT: 0.72983250 
 SUNTZU7.TXT: 0.72487356 
 CONF4.TXT: 0.69979020 
 CONF6.TXT: 0.67814051 
 SUNTZU12.TXT: 0.64950340 
 PLNSENCA.HTM: 0.56114178 
 COMRULE.HTM: 0.51658239 
 TOMCNTND.HTM: 0.50065410 
 APCTHOM.HTM: 0.48768289 
 REPORTPL.HTM: 0.47891968 
 ACTPTNPL.HTM: 0.47778194 
 BKS.HTM: 0.47725729 
 SENTANCE.HTM: 0.47653668 
 REPTPILT.HTM: 0.47355391 
........................... 

Z:\>new_doc_bool suntzu1.txt 
conf1.txt OR 0.75 
 

SUNTZU1.TXT: 0.99999999 
 CONF1.TXT: 0.99999998 
 CONF2.TXT: 0.92418579 
 SUNTZU8.TXT: 0.90521829 
 SUNTZU10.TXT: 0.89864172 
 CONF3.TXT: 0.85550050 
 SUNTZU3.TXT: 0.85472377 
 SUNTZU11.TXT: 0.85381300 
 SUNTZU13.TXT: 0.85353224 
 SUNTZU2.TXT: 0.85238124 
 CONF5.TXT: 0.84852132 
 CONF8.TXT: 0.83961903 
 SUNTZU6.TXT: 0.83889037 
 SUNTZU5.TXT: 0.83654047 
 SUNTZU9.TXT: 0.83588777 
 CONF9.TXT: 0.83270307 
 CONF7.TXT: 0.83205800 
 SUNTZU4.TXT: 0.82999522 
 SUNTZU7.TXT: 0.82540432 
 CONF4.TXT: 0.80410553 
 CONF6.TXT: 0.78554770 
 SUNTZU12.TXT: 0.75383431 
 PLNSENCA.HTM: 0.64710513 
 COMRULE.HTM: 0.59963388 
 TOMCNTND.HTM: 0.57831268 
 APCTHOM.HTM: 0.57252802 
 REPORTPL.HTM: 0.56209784 
 ACTPTNPL.HTM: 0.56096201 
 BKS.HTM: 0.55498588 
 REPTPILT.HTM: 0.55446255 
 SENTANCE.HTM: 0.55069749 
...........................

Z:\>new_doc_bool suntzu1.txt 
conf1.txt OR 1 
 

SUNTZU1.TXT: 1.00000000 
 CONF1.TXT: 1.00000000 
 SUNTZU10.TXT: 0.96812259 
 SUNTZU8.TXT: 0.96652910 
 CONF2.TXT: 0.95785760 
 CONF3.TXT: 0.94867210 
 SUNTZU11.TXT: 0.93972055 
 CONF5.TXT: 0.93911675 
 SUNTZU3.TXT: 0.93858290 
 SUNTZU9.TXT: 0.93604917 
 CONF8.TXT: 0.93511123 
 CONF7.TXT: 0.93428351 
 SUNTZU5.TXT: 0.93365826 
 SUNTZU2.TXT: 0.93192063 
 CONF9.TXT: 0.93101313 
 SUNTZU6.TXT: 0.93054489 
 SUNTZU4.TXT: 0.92828905 
 SUNTZU7.TXT: 0.92593509 
 SUNTZU13.TXT: 0.91114359 
 CONF4.TXT: 0.90842086 
 CONF6.TXT: 0.89295488 
 SUNTZU12.TXT: 0.85816521 
 PLNSENCA.HTM: 0.73306848 
 COMRULE.HTM: 0.68268537 
 APCTHOM.HTM: 0.65737315 
 TOMCNTND.HTM: 0.65597126 
 REPORTPL.HTM: 0.64527600 
 ACTPTNPL.HTM: 0.64414208 
 REPTPILT.HTM: 0.63537118 
 BKS.HTM: 0.63271447 
 SENTANCE.HTM: 0.62485831 
........................... 
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