The $\mathrm{C}(\mathrm{M})$ programming language

Stoyan Mihov

April 7, 2016

1 Overview

$\mathrm{C}(\mathrm{M})$ is an efficient and powerful programming language, which directly translates mathematical constructions into efficient C programs. It has efficient very high-level structures and expressions, which enable the rapid development of complex algorithms and applications.

The $\mathrm{C}(\mathrm{M})$ compiler is freely available in executable form for the major platforms from the $\mathrm{C}(\mathrm{M})$ site, http://lml.bas.bg/~stoyan/lmd/C\% $28 \mathrm{M} \% 29 . \mathrm{html}$. The compiler translates the $\mathrm{C}(\mathrm{M})$ program into a readable C program with the same names of identifiers and similar structure to the original. The C program can be further modified, extended or embedded into other programs.

This paper introduces informally the basic concepts and features of the $C(M)$ language. It does not attempt to be comprehensive. Instead, it introduces many of $\mathrm{C}(\mathrm{M})$'s most noteworthy features, which give a good idea of the languages flavour and style. The appendix provides the formal syntax description.

2 Concept of C(M)

The main idea behind the $\mathrm{C}(\mathrm{M})$ language is the usage of the standard mathematical language for the description of algorithms and the construction of data structures. It implements as data structures mathematical objects like tuples, sets, lists, functions, relations and matrices.

The main features of the language are:

- Declarative programming style - only one assignment of an expression to a variable is allowed;
- Strong type checking - the type of each identifier has to be defined at compile time and there is no universal type;
- High-level functional programming - functions can be used as parameters and returned as result, Currying of functions is supported;
- High-level expressions - set builder notation, quantification, function lifting and others are supported;
- Construction of structures by induction - with the notion of mathematical induction we obtain efficient implementations without sacrificing the declarative nature of the language.
- Optimal (in some sense) memory management - the memory allocated by the objects is either reused or freed authomatically after their last usage without performing garbage collection.
$\mathrm{C}(\mathrm{M})$ can be regarded as a strictly typed declarative functional language. In addition to the common functional languages $C(M)$ implements mathematical syntax, set-theoretic high-level structures and expressions and construction by induction. The high-level structures and expressions have similarities with the ones in the SETL language but $\mathrm{C}(\mathrm{M})$ differs by its declarative nature and strong type checking.

3 Example

```
R}\mathrm{ is }\mp@subsup{2}{}{\mathbb{N}\times\mathbb{N}
closure : \mathcal{R}->\mathcal{R};
closure(A):=T, where
    T:= induction
        step 0:
            T(0)}:=A
        step n+1:
            T (n+1)}:=\mp@subsup{T}{}{(n)}\cup{(a,c)|(a,b)\in\mp@subsup{T}{}{(n)},(b,c)\inA}
        until }\forall(a,b)\in\mp@subsup{T}{}{(n)},(b,c)\inA:((a,c)\in\mp@subsup{T}{}{(n)}
        ;
    ;
dump }\leftarrow\operatorname{closure}({(1,2),(2,3),(3,5),(5,10)})
```

```
R is 2^(IN*IN);
```

R is 2^(IN*IN);
closure in R -> R;
closure in R -> R;
closure(A) := T, where
closure(A) := T, where
T := induction
T := induction
step 0:
step 0:
T@O := A;
T@O := A;
step n+1:
step n+1:
T@n+1 := T@n \/ {(a,c) | (a,b) in T@n, (b,c) in A};
T@n+1 := T@n \/ {(a,c) | (a,b) in T@n, (b,c) in A};
until forall (a,b) in T@n, (b,c) in A : ((a,c) in T@n)
until forall (a,b) in T@n, (b,c) in A : ((a,c) in T@n)
;
;
;
;
dump <- closure({(1,2),(2,3),(3,5),(5,10)});

```
dump <- closure({(1,2),(2,3),(3,5),(5,10)});
```

Perhaps the best introduction to $C(M)$ is a short example. The following is a complete $C(M)$ program to construct the transitive closure of a finite relation of natural numbers. At the end the closure of a concrete relation is dumped.

The program above is listed twice - first using the mathematical layout, and second, as plain text. The compiler supports an automatic translation from the plain text into LaTeX for producing the mathematical layout.

This program starts with the naming of the type $2^{\mathbb{N} \times \mathbb{N}}$ as \mathcal{R} in Line 1 . The largest part of this program is the "closure" function definition in lines $3-11$. As stated in Line 2 closure is of type $\mathcal{R} \rightarrow \mathcal{R}$ i.e. a function which takes a parameter of type \mathcal{R} and returns result of type \mathcal{R}. In Line 3 the parameter is named A and the result returned is named T. T is defined in the where block in lines $4-11 . \mathrm{C}(\mathrm{M})$ uses the semicolon in line 11 to recognise the where block end. T is defined by an induction statement in lines $4-10$. The semicolon in Line 10 marks the end of the induction statement. The base - step 0 of the induction sets the base of T to A in Line 6 . The inductive step defines the $(n+1)^{\text {th }}$ value of T as $T^{(n)} \cup\left\{(a, c) \mid(a, b) \in T^{(n)},(b, c) \in A\right\}$ in Line 8. In this assignment $T^{(n+1)}$ becomes the union of $T^{(n)}$ with the set of all (a, c), where (a, b) runs through $T^{(n)}$ and (b, c) runs through A. The inductive step is performed until the condition in Line 9 is satisfied. This condition states that for every $(a, b) \in T^{(n)}$ and $(b, c) \in A$ it holds that $(a, c) \in T^{(n)}$. This means that the inductive step will not extend $T^{(n)}$ anymore. Line 12 dumps the closure of $\{(1,2),(2,3),(3,5),(5,10)\}$ to the output.

The compiler takes as input the plain text of the program (without the line numbering) and outputs a C source code. Let the above program is presented in a file named example.cm. Then the compiler is invoked by:
cm example.cm -o example.c
The file example.c will contain the corresponding C source code. Afterwards the C code has to be compiled with the gcc compiler for producing an executable. Currently the C code generated by $\mathrm{C}(\mathrm{M})$ contains nested functions, which are supported by gcc but are not ANSI C compatible. The compilation is invoked by the following command:
gcc -fnested-functions -lm -o example example.c

In the newer versions (e.g 4.7) of gcc the option -fnested-functions has to be omitted. If no floating point functions are used then the $-1 m$ option is not required.

The LaTeX layout is generated by the compiler in the following way:
cm -L example.cm -o example.tex
Afterwards the example.tex file has to be compiled with LaTeX.

4 Types

$\mathrm{C}(\mathrm{M})$ supports the following basic types: $\mathrm{IN}(\mathbb{N})$ for natural numbers, $\mathrm{IZ}(\mathbb{Z})$ for integer numbers, IR (\mathbb{R}) for real numbers and IB (\mathbb{B}) for boolean values. Those types are implemented in C as unsigned long, long, double and unsigned long correspondingly. The type for matrix of real numbers is M(IR) $(\mathcal{M}(\mathbb{R}))$.
$\mathrm{C}(\mathrm{M})$ supports the following complex types:

- Tuples: if T_1, T_2 $, \ldots, \mathrm{T}_{_} \mathrm{n}\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ are types then $\mathrm{T}_{-} 1 * \mathrm{~T}_{_} 2 * \ldots * \mathrm{~T} _\mathrm{n}\left(T_{1} \times T_{2} \times \ldots \times T_{n}\right)$ is the type of the n-tuples, whose i-th projection is of type $\mathrm{T}_{-} \mathrm{i}\left(T_{i}\right)$.
- Lists: if T is a type then $T^{\wedge} *\left(T^{*}\right)$ is the type of the lists with elements of T.
- Sets: if T is a type then $2^{\wedge} T\left(2^{T}\right)$ is the type of the sets with elements of T.
- Functions: if T_1 $\left(T_{1}\right)$ and $T_{-} 2\left(T_{2}\right)$ are types then $T_{-} 1 \rightarrow T_{-} 2\left(T_{1} \rightarrow T_{2}\right)$ is the type of functions with domain T_{1} and range T_{2}.

Parentheses have to be used for type grouping. For example the type $A \times B \times C$ indicates the type of triples whose first, second and third projections are of types A, B and C correspondingly. $(A \times B) \times C$ indicates the type of pairs whose first projection is a pair of the types A and B and its second projection is of type C.

The type STRING is predefined as \mathbb{N}^{*}.

5 Identifiers

The identifiers in $\mathrm{C}(\mathrm{M})$ have to start with a letter, can contain digits and can end with apostrophes. The identifiers can also have indices. Some examples of identifiers are given below:

X	X
X1s',	$X 1 s^{\prime \prime}$
X'_3	X_{3}^{\prime}
A ' $^{\prime} \mathrm{p}^{\prime}$ _3	$A_{p_{3}^{\prime}}^{\prime}$

Inside an induction statement the inductive identifiers are followed by the index in the series in parentheses:

A@O	$A^{(0)}$
A'_2@n	$A_{2}^{\prime}{ }^{(n)}$
A^{\prime} @n_c+1	$A^{\prime\left(n_{c}+1\right)}$

6 Constants

The following types of constants are supported in C(M) :
Booleans true, false
Natural numbers 3, 2014
Real numbers $\quad-25.349,2.1234 \mathrm{E}-23$
Strings "Example", "This is a sentence."
The empty set $\quad\}(\emptyset)$
The null list $\quad[](\varepsilon)$
The constants are the simplest expressions.

7 Terms

$\mathrm{C}(\mathrm{M})$ allows the grouping of identifiers into tuples for supporting of parallel assignments or multiple definitions. Tuples of identifiers can be recursively grouped into terms. Examples of terms are:

$$
\begin{aligned}
& A \\
& (a, b) \\
& \left(a,\left(\left(b, c^{\prime}, d\right), f_{1}\right)\right)
\end{aligned}
$$

Terms can be used for running arguments in set builder and quantifier expressions (see next section). In those cases the term can contain constants as well for constraining the running arguments. For example if S is a set of triples then in a set builder $\left(a, 0, X^{\prime}\right) \in S$ will run through the triples of S with second projection equal to 0 .

8 Expressions

Constants and identifiers which are already defined are the simplest expressions.

Tuples

$(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$	(a, b, c, d)	tuple construction
$\operatorname{Proj}(2, \mathrm{~T})$	$\operatorname{Proj}_{2}(T)$	tuple projection
$\operatorname{Proj}((2,4), \mathrm{T})$	$\operatorname{Proj}_{(2,4)}(T)$	tuple projection to subtuple

Comparisons

E_1=E_2	$E_{1}=E_{2}$	equal
E_1~=E_2	$E_{1} \neq E_{2}$	not equal
E_1<E_2	$E_{1}<E_{2}$	lower (for numbers only)
E_1<=E_2	$E_{1} \leq E_{2}$	lower or equal (for numbers only)
E_1>E_2	$E_{1}>E_{2}$	greater (for numbers only)
E_1>=E_2	$E_{1} \geq E_{2}$	greater or equal (for numbers only)

Sets

$\|S\|$	$\|S\|$	number of elements in the set S
\{a,b, c, d\}	$\{a, b, c, d\}$	set of items
\{n_1..n_2\}	$\left\{n_{1}, \ldots, n_{2}\right\}$	set of the numbers from n_{1} to n_{2}
S_1/\S_2	$S_{1} \cap S_{2}$	intersection
S_1 ${ }^{\text {/S_2 }}$	$S_{1} \cup S_{2}$	union
S_1 \S_2	$S_{1} \backslash S_{2}$	difference
S_1 subset S_2	$S_{1} \subset S_{2}$	subset
S_1 ~subset S_2	$S_{1} \not \subset S_{2}$	non-subset
S_1 meets S_2	$S_{1} \cap S_{2} \neq \emptyset$	meets
S_1 ~meets S_2	$S_{1} \cap S_{2}=\emptyset$	meets not
a in S	$a \in S$	membership of a in S
a ~in S	$a \notin S$	non-membership of a in S
union(S)	$\bigcup(S)$	union of the element in the sets in S
2^S	2^{S}	the set of all subsets of S
S_1*S_2*. . . *S_k	$S_{1} \times S_{2} \times \ldots \times S_{k}$	cartesian product
\{E\| t_1 in S_1 \& C_1,	$\left\{E \mid t_{1} \in S_{1} \& C_{1}, t_{2}=\right.$	set builder, where E is an expression, t_{i}
t_2=E_2 \& C_2, ...,t_k in	$\left.E_{2} \& C_{2}, \ldots, t_{k} \in S_{k} \& C_{k}\right\}$	are terms, S_{i} and resp. E_{i} are sets or
S_k \& C_k $\}$		lists and resp. expressions, and C_{i} are optional conditional expressions.

Relation (set of tuples)

All set expressions plus the following:

$\operatorname{Proj}(2, \mathrm{R})$	$\operatorname{Proj}_{2}(R)$	Relation projection
$\operatorname{Proj}((2,4), \mathrm{R})$	$\operatorname{Proj}_{(2,4)}(R)$	Relation projection to subrelation
$\operatorname{Func}(1,2, \mathrm{R})$	$\mathcal{F}_{1 \rightarrow 2}(R)$	functionalization of R

Function

Functions are sets of pairs, which have unique mapping. All expressions on sets and relations are applicable plus the following:

```
!f(x) !f(x) true if f(x) is defined, false otherwise
fl_E fl |
```


Lists

| \| L | | $\|L\|$ | length of the list L |
| :---: | :---: | :---: |
| [A, B , C, D] | $\langle A, B, C, D\rangle$ | list of items |
| [n_1..n_2] | $\left\langle n_{1}, \ldots, n_{2}\right\rangle$ | list of the numbers from n_{1} to n_{2} |
| L_1.L_2 | $L_{1} \cdot L_{2}$ | concatenation of lists |
| L[i] | $(L)_{i}$ | i-th element of a list |
| L[i.. j] | $(L)_{i, \ldots, j}$ | sublist from i-th to j-th element |
| \# (a, L) | $\#{ }_{L}(a)$ | the index of a in L |
| a in L | $a \in L$ | membership of a in L |
| a ~in L | $a \notin L$ | non-membership of a in L |
| flatten(L) | $\bigcirc(L)$ | list of the elements of the lists in L |
| [E \| t_1 in S_1 \& C_1, | $\langle E\| t_{1} \in S_{1} \& C_{1}, t_{2}=$ | list builder, where E is an expression, |
| t_2=E_2 \& C_2, ...,t_k in | $\left.E_{2} \& C_{2}, \ldots, t_{k} \in S_{k} \& C_{k}\right\rangle$ | t_{i} are terms, S_{i} and resp. E_{i} are sets or |
| S_k \& C_k] | | lists and resp. expressions, and C_{i} are optional conditional expressions. |

Lists and sets of numbers

$\min (\mathrm{L})$	$\min (L)$	minimal element in the list/set
$\max (\mathrm{L})$	$\max (L)$	maximal element in the list/set
$\operatorname{sum}(\mathrm{L})$	$\sum(L)$	sum of the elements in the list/set
$\operatorname{prod}(\mathrm{L})$	$\prod(L)$	product of the elements in the list/set

Boolean operators

\sim E	$\neg E$	negation
E_1/\E_2	$E_{1} \wedge E_{2}$	conjunction
E_1 $\backslash / E _2$	$E_{1} \vee E_{2}$	disjunction
E_1->E_2	$E_{1} \rightarrow E_{2}$	implication
E_1<->E_2	$E_{1} \leftrightarrow E_{2}$	equivalence
forall t_1 in S_1,...,t_k in S_k: (E)	$\forall t_{1} \in S_{1}, \ldots, t_{k} \in S_{k}:(E)$	universal quantifier
exists t_1 in S_1,...,t_k in S_k: (E)	$\exists t_{1} \in S_{1}, \ldots, t_{k} \in S_{k}:(E)$	existential quantifier

Expressions on natural, integer and real numbers

$\|E\|$	$\|E\|$	absolute value
$-E$	$-E$	negative value
$+E$	$+E$	positive value
E_1^E_2	$E_{1}^{E_{2}}$	power
E_1 $*$ E_2	$E_{1} \times E_{2}$	multiplication
E_1/E_2	E_{1} / E_{2}	devision
E_1+E_2	$E_{1}+E_{2}$	addition
E_1-E_2	$E_{1}-E_{2}$	substraction
E_1 rem E_2	E_{1} rem E_{2}	reminder

Expressions on matrices

-M	$-M$	negative value
+M	+M	positive value
M ${ }^{\text {c }}$	M^{T}	transposition
M_1 ${ }^{\wedge} \mathrm{E}$ _2	$M_{1}^{E_{2}}$	power (not implemented yet)
M_1 $*$ M_2	$M_{1} \times M_{2}$	multiplication
M_1/M_2	M_{1} / M_{2}	devision (not implemented yet)
M_1 M_2 $^{\text {a }}$	$M_{1} \backslash M_{2}$	left devision (not implemented yet)
M_1+M_2	$M_{1}+M_{2}$	addition
M_1-M_2	$M_{1}-M_{2}$	substraction
M_1. ${ }^{\text {E_2 }}$	$M_{1} \cdot \wedge M_{2}$	dot power
M_1.*M_2	$M_{1} \cdot \times M_{2}$	dot multiplication
M_1./M_2	$M_{1} \cdot / M_{2}$	dot devision
M_1. M_2	$M_{1} \cdot M_{2}$	horizontal concatenation of matrices
M_1 $\backslash \backslash$ M_2	$\begin{aligned} & M_{1} \\ & M_{2} \end{aligned}$	vertical concatenation of matrices
[:A,B,C, D:]	$[A, B, C, D]$	1-row matrix
M $[1, j]$	$M_{i, j}$	matrix element
M[L_1,L_2]	$M_{L_{1}, L_{2}}$	submatrix with indices $L_{1} \times L_{2}$
[:E\|i=1..n:]	$[E \mid i=1, \ldots, n]$	1-row matrix builder
[:E\|i=1..n, j=1..m:]	$[E \mid i=1, \ldots, n, j=1, \ldots, m]$	matrix builder

Conditional expressions

| $?$ | E_1 if C_1 | |
| :--- | :--- | :--- | :--- |
| $?$ | E_2 if C_2 | |
| \vdots | | E_{1} if C_{1} |
| $?$ | E_k if C_k | |
| $?$ | E_k +1 otherwise | |\(\left\{\begin{array}{lll}E_{1} \& if C_{1} \& E_{2} if C_{2}

E_{2} \& if C_{2} \&

\vdots \& \& E_{k} if C_{k}

E_{k} \& if C_{k} \& E_{k+1} otherwise\end{array}\right.\)

Build-in functions, constants and objects

Function	Type	Description
true, false	B	boolean constants
$\operatorname{set}(L)$	$T^{*} \rightarrow 2^{T}$	the set of the elements in the list L
elementOf(S)	$2^{T} \rightarrow T$	returns one element of S
	$(T \rightarrow \mathbb{N}) \times T^{*} \rightarrow T$	
$\operatorname{argmin}(f, L), \operatorname{argmax}(f, L)$	$(T \rightarrow \mathbb{R}) \times T^{*} \rightarrow T$	returns a value in L for which the
	$(T \rightarrow \mathbb{Z}) \times 2^{T} \rightarrow T$	function f is minimal/maximal
	$(T \rightarrow \mathbb{R}) \times 2^{T} \rightarrow T$	
$\operatorname{subst}(L, i, v)$	$T^{*} \times \mathbb{N} \times T \rightarrow T^{*}$	substitution of the i-th element in L with v
$\operatorname{substl}(L, I, V)$	$T^{*} \times \mathbb{N}^{*} \times T^{*} \rightarrow T^{*}$	substitution of the elements with indices I in L with V
$\operatorname{rows}(M), \operatorname{cols}(M)$	$\mathcal{M}(\mathbb{R}) \rightarrow \mathbb{N}$	number of rows/columns of M
$\operatorname{substMat}(M, i, j, v)$	$\mathcal{M}(\mathbb{R}) \times \mathbb{N} \times \mathbb{N} \times \mathbb{R} \rightarrow \mathcal{M}(\mathbb{R})$	substitution the element at (i, j) in M with v
substSubMatrix $\left(M, I, J, M^{\prime}\right)$	$\mathcal{M}(\mathbb{R}) \times \mathbb{N}^{*} \times \mathbb{N}^{*} \times \mathcal{M}(\mathbb{R}) \rightarrow \mathcal{M}(\mathbb{R})$	substitution the submatrix at indicies $I \times J$ in M with M^{\prime}
$\operatorname{AND}(a, b), \operatorname{OR}(a, b), \operatorname{XOR}(a, b)$	$\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$	bitwise and/or/exclusive or of a and b
$\mathrm{NOT}(a)$	$\mathbb{N} \rightarrow \mathbb{N}$	bitwise negation of A
$\operatorname{SHL}(a, b), \operatorname{SHR}(a, b)$	$\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$	shift left/right of a with b bits
$\sin (x), \cos (x), \tan (x)$	$\mathbb{R} \rightarrow \mathbb{R}$	trigonometric functions
$\operatorname{asin}(x), \operatorname{acos}(x), \operatorname{atan}(x)$	$\mathbb{R} \rightarrow \mathbb{R}$	inverse trigonometric functions
$\sinh (x), \cosh (x), \tanh (x)$	$\mathbb{R} \rightarrow \mathbb{R}$	hyperbolic trigonometric functions
$\operatorname{asinh}(x), \operatorname{acosh}(x), \operatorname{atanh}(x)$	$\mathbb{R} \rightarrow \mathbb{R}$	inverse hyperbolic trigonometric functions
sqrt $(x), \exp (x)$	$\mathbb{R} \rightarrow \mathbb{R}$	square root and exponent functions
$\log (x), \log 2(x), \log 10(x)$	$\mathbb{R} \rightarrow \mathbb{R}$	natural, base 2 and base 10 logarithm functions
$\operatorname{erf}(x), \operatorname{tgamma}(x), \operatorname{lgamma}(x)$	$\mathbb{R} \rightarrow \mathbb{R}$	error function, gamma and logarithm of gamma functions
floor $(x), \operatorname{ceil}(x), \operatorname{trunc}(x)$	$\mathbb{R} \rightarrow \mathbb{R}$	floor, ceiling and truncate functions
round $(x), \operatorname{rint}(x)$	$\mathbb{R} \rightarrow \mathbb{R}$	rounding functions
$\operatorname{lrint}(x)$	$\mathbb{R} \rightarrow \mathbb{Z}$	rounding to whole number
$\operatorname{str}(i)$	$\mathbb{N} \rightarrow$ STRING	textual representation of i
loadBin(F)	$S T R I N G \rightarrow \mathbb{N}^{*}$	loads the binary file F and returns the list of its bytes
loadText (F)	STRING \rightarrow STRING	loads the text file F and returns its UTF-8 symbols
restore (F)	$S T R I N G \rightarrow T$	restores an object stored in the file F
restoreBin (F)	STRING \rightarrow T	restores an object stored in the binary file F
argc	IN	number of command line arguments passed to the program
$\operatorname{argv}(i)$	$\mathbb{N} \rightarrow S T R I N G$	the i-th command line argument passed to the program
mainResult	IN	if assigned it will be the exit status of the program execution

9 Statements

Any program in $C(M)$ is a list of statements. There are only 4 kinds of statements - type definitions, declarations, assignments and supplementary actions. Any statement must end with a semicolon.

9.1 Type definition

A type definition is used for naming a complex type. A type definition is in the form:

ID is TYPE;

For example the statement in Line 1 of our example is naming the type $2^{\mathbb{N} \times \mathbb{N}}$ to \mathcal{R}.

9.2 Declaration

The declaration statements are used for declaring the types of the used terms and identifiers. A declaration is required in the following two cases: when the term is defined by induction ${ }^{1}$ or when a function is defined with an expression from its parameters. In case the type of a term can be inferred from the expression, which has been assigned to the term, the declaration is not obligatory. Though in some cases the type inferred from the expression might not be what is needed and a declaration has to correct it. The declaration statement is in the form:
$\mathrm{TERM}_{1}, \mathrm{TERM}_{2}, \ldots, \mathrm{TERM}_{n}$ in TYPE;
The statement in Line 2 of the example declares the type of "closure" to $\mathcal{R} \rightarrow \mathcal{R}$.

9.3 Assignment

The assignments are the most commonly used statements in $C(M)$. They are used to calculate and assign a value to a term. The general form of an assignment statement is:

TERM := ASSIGNMENT;
If the term is a name of a function then the function can be defined on its parameters in the following way:

ID (PARAMETER_1, PARAMETER_2, ..., PARAMETER_k) := ASSIGNMENT;
There are 4 types of assignments - simple assignment, assignment with where block, case assignment and inductive assignment.

9.3.1 Simple assignment

The simple assignment is an expression. for example the statements in Lines 6 and 8 in our example are simple assignments.

TERM := EXPRESSION;

9.3.2 Assignment with where block

The assignment statements with a where block are like the simple assignments but followed by a block of additional statements after the where keyword. Those additional statements are usually required for defining the objects used in the expression. The general form of such a assignment statement is:

```
TERM := EXPRESSION, where
    STATEMENT_1;
    STATEMENT_2;
    ...
    STATEMENT_k;
;
```

In our example an assignment statements with a where block is given in Lines 3-11.

[^0]
9.3.3 Case assignment

The case assignment consists of a list of pairs and expressions. The expression of the first fulfilled condition is assigned to the term. An otherwise expression is optional and will be assigned in case non of the conditions holds:

```
TERM :=
    case CONDITION_1 : EXPRESSION_1
    case CONDITION_2 : EXPRESSION_2
    case CONDITION_k : EXPRESSION_k
    otherwise EXPRESSION_k+1
    ;
```

Each expression might be followed by a where block. The general form is:
TERM :=
case CONDITION_1 : EXPRESSION_1, where
STATEMENTS
case CONDITION_2 : EXPRESSION_2, where
STATEMENTS

9.3.4 Inductive assignment

The inductive assignment is used for inductive constructions of terms. The general form is:

```
TERM := induction
    step 0 :
        STATEMENTS
    step n+1 :
        STATEMENTS
    until CONDITION
;
```

The base of the induction is defined by the statements after the step 0 keyword. The inductive step is defined by the statements after the step $n+1$ keyword. The inductive steps are repeated until the condition holds. In Lines $4-10$ of our example T is defined by an inductive statement.

9.4 Supplementary actions

Besides the definitions, declarations and assignments $C(M)$ supports supplementary actions for mainly for outputting and dumping of resulting objects. The general form is:

ACTION <- EXPRESSION;
In line 12 of the example the closure of the given relation is dumped out. Currently the following actions are implemented:

dump <- E;	,
print <-E;	the expression, which must be a STRING is printed on the standard output
assert <- E;	if the expression of type \mathbb{B} does not hold the program halts
store <-	the expression E will be stored in the file with name F (must be a STRIN
storeBin <- (F	the expression E will be stored in binary format in the file with name F (must be a STRING)
saveBin <- (F,L)	the list of bytes L (must be \mathbb{N}^{*}) will be stored in the binary file with name F (must be a STRING)
saveText <- (F,T)	the text T (must be STRING) will be stored in the UTF-8 text file with name F (must be a STRING)
import <- F;	import the file with name F (must be a STRING constant) to the program (in case of multiple imports of the same file, the file will be imported only once)
include <- F;	include the source from file with name F (must be a STRING constant) to the program at the corresponding place. (Multiple inclusion of the same file are allowed.)

10 Comments

In the $\mathrm{C}(\mathrm{M})$ programs everything after // till the end of the line is regarded as a comment. If the comment is placed between two statements it will appear also in the LaTeX code. Thus the comments can contain LaTeX commands which will be considered in the LaTex compilation.

11 The example revisited

Looking at the example in Section 3 we can find two major sources of inefficiencies.
First, all the elements of $T^{(n)}$ are considered to be extended transitively with elements of A at each step, although it is clear that the elements considered on previous steps can not deliver new pairs. This can be avoided by considering at step $n+1$ only the $n+1$-st element of $T^{(n)}$. The second deficiency is that after choosing a pair (a, b) from T to be extended, we run through all pairs from A to find the ones with first coordinate b. Instead of that we can construct a function A^{\prime}, which for a given b returns the set of all c, such that $(b, c) \in A$. In the new implementation given below we define T as a pair of numbers in Line 4. A^{\prime} is defined in Line 5 . The type of A^{\prime} will be $\mathbb{N} \rightarrow 2^{\mathbb{N}}$. In Lines $6-13 T$ is constructed inductively. The main inductive step is given in Line 11 where $T^{(n)}$ is extended with the extensions of the $n+1$-st pair in $T^{(n)}$. The induction ends when all elements of $T^{(n)}$ are processed.

```
\(\mathcal{R}\) is \(2^{\mathbb{N} \times \mathbb{N}}\);
closure : \(\mathcal{R} \rightarrow \mathcal{R}\);
\(\operatorname{closure}(A):=\operatorname{set}(T)\), where
    \(T \in(\mathbb{N} \times \mathbb{N})^{*} ;\)
    \(A^{\prime}:=\mathcal{F}_{1 \rightarrow 2}(A)\);
    \(T:=\) induction
        step 0 :
                \(T^{(0)}:=A\) as \((\mathbb{N} \times \mathbb{N})^{*} ;\)
        step \(n+1\) :
            \((a, b):=\left(T^{(n)}\right)_{n+1} ;\)
            \(T^{(n+1)}:=T^{(n)} \cdot\left\{\begin{array}{ll}\left\langle(a, c) \mid c \in \mathrm{~A}^{\prime}(b) \&(a, c) \notin T^{(n)}\right\rangle & \text { if }!\mathrm{A}^{\prime}(b) \\ \varepsilon & \text { otherwise }\end{array} ;\right.\)
        until \(n=\left|T^{(n)}\right|\)
        ;
    ;
dump \(\leftarrow \operatorname{closure}(\{(1,2),(2,3),(3,5),(5,10)\}) ;\)
```


A Syntax definiton

The formal syntax is defined using the LLgen notation (http://www.cs.vu.nl/~ceriel/LLgen.html).

```
%token ID; /* identifier */
%token IDN; /* inductive identifier */
%token STRING; /* string constant */
%token NUM; /* natural number constant */
%token RNUM; /* real number constant */
%token restr; /* |_ */
%token in; /* in */
%token subset; /* subset */
%token meets; /* meets */
%token cap; /* /\ */
%token cup; /* \/ */
%token le; /* <= */
%token ge; /* >= */
%token dd; /* .. */
%token forall; /* forall */
```

```
%token exists; /* exists */
%token if; /* if */
%token otherwise; /* otherwise */
%token where; /* where */
%token eqv; /* <-> */
%token until;
%token induction;
%token step;
%token is;
%token def;
%token arrow;
%token rem;
%token as;
%token case;
%token opmat;
%token clmat;
%token newrow;
%token larrow;
%token proj;
%token func;
/* until */
/* induction */
/* step */
/* is */
/* := */
/* -> */
/* rem */
/* as */
/* case */
/* [: */
/* :] */
/* \\ */
/* <- */
/* Proj */
/* Func */
%token defined;
%start setlang, STMTL;
UNOP : '+' | '_' | ,~, | '!' | cup | '.',;
MULOP : '/' | '\\' | restr | rem |'.' ['*' | '/' | ,^, ]? ;
ADDOP : '+' | '-' | cap | cup | arrow | eqv ;
EQOP : '=' | '<' | '>' | le | ge | in | subset | meets | ,~, [ in | subset | meets | '='];
QUANTOR : forall | exists ;
TYPE : DTYPE [ arrow DTYPE] * ;
DTYPE : CTYPE [ '*' CTYPE ] * ;
CTYPE : BTYPE ['^, '*'] * ;
BTYPE : ID [ '(' ID ')' ] ? | '(' TYPE ')' | NUM '^' BTYPE ;
AEXPR :
    NUM | RNUM | STRING | ID | IDN |
    CASE |
    '|' EXPR '|' |
    '(' EXPRL ')' |
    '#' '(' EXPR ',' EXPR ')' |
    proj '(' EXPR ',' EXPR ')' |
    func '(' EXPR ',' EXPR ',' EXPR ')' |
    if '(' EXPR ',' EXPR ',' EXPR ')' |
    '{' [ EXPR [',' EXPRL | dd EXPR | '|' TERMEXPRL ] ? ] ? '}'|
    '[' [ EXPR [',' EXPRL | dd EXPR | '|' TERMEXPRL ] ? ] ? ']'|
    opmat EXPR [',' EXPRL | '|' [ ID '=' NUM dd EXPR ] +2 ] ? clmat |
    QUANTOR TERMEXPRL ':' '(' EXPR ')' ;
CASE : '?' EXPR [ if [defined | EXPR] [CASE | otherwise] ] ;
POSOP : '(' EXPR ')' | '[' EXPR [ dd EXPR | ',' EXPR ] ? ']' | '', ;
POSEXPR : AEXPR POSOP * ;
```

```
UNEXPR : UNOP * POSEXPR;
POWEXPR : UNEXPR [ '^, UNEXPR ] *;
TMSEXPR : POWEXPR [ '*' POWEXPR ] * ;
MULEXPR : TMSEXPR [ MULOP TMSEXPR ] * ;
ADDEXPR : MULEXPR [ ADDOP MULEXPR ] * ;
MATEXPR : ADDEXPR [ newrow ADDEXPR ] * ;
EQEXPR : MATEXPR [ EQOP MATEXPR ] * ;
EXPR : EQEXPR [ as TYPE ] ? ;
EXPRL : EXPR [ ',' EXPR ] * ;
TERM : ID | IDN | NUM | RNUM | STRING | '(' TERML ')' ;
TERML : TERM [ ',' TERM ] * ;
TERMEXPR : TERM [in | '='] EXPR ['&' EXPR ]? ;
TERMEXPRL : TERMEXPR [ ',' TERMEXPR ]* ;
ASSGNMNT : EXPR [ ',' where STMTL ] ? |
    [ case EXPR ':' EXPR [ ',' where STMTL]? ] + [otherwise ':' EXPR [ ',' where STMTL]? ] ? |
    induction
        step NUM ':' STMTL
        step ID '+' NUM ':' STMTL
        until EXPR ;
STMT : TERML [ is TYPE |
        in TYPE |
        TERM ? def ASSGNMNT |
larrow EXPR
    ] ;
STMTL : [ STMT ';' ]+ ;
```


[^0]: ${ }^{1}$ Unless its type is not implicitly known.

