
The C(M) programming language

Stoyan Mihov

April 7, 2016

1 Overview

C(M) is an efficient and powerful programming language, which directly translates mathematical con-
structions into efficient C programs. It has efficient very high-level structures and expressions, which
enable the rapid development of complex algorithms and applications.

The C(M) compiler is freely available in executable form for the major platforms from the C(M) site,
http://lml.bas.bg/~stoyan/lmd/C%28M%29.html. The compiler translates the C(M) program into a
readable C program with the same names of identifiers and similar structure to the original. The C
program can be further modified, extended or embedded into other programs.

This paper introduces informally the basic concepts and features of the C(M) language. It does not
attempt to be comprehensive. Instead, it introduces many of C(M) ’s most noteworthy features, which
give a good idea of the languages flavour and style. The appendix provides the formal syntax description.

2 Concept of C(M)

The main idea behind the C(M) language is the usage of the standard mathematical language for the
description of algorithms and the construction of data structures. It implements as data structures
mathematical objects like tuples, sets, lists, functions, relations and matrices.

The main features of the language are:

• Declarative programming style – only one assignment of an expression to a variable is allowed;

• Strong type checking – the type of each identifier has to be defined at compile time and there is
no universal type;

• High-level functional programming – functions can be used as parameters and returned as result,
Currying of functions is supported;

• High-level expressions – set builder notation, quantification, function lifting and others are sup-
ported;

• Construction of structures by induction – with the notion of mathematical induction we obtain
efficient implementations without sacrificing the declarative nature of the language.

• Optimal (in some sense) memory management – the memory allocated by the objects is either
reused or freed authomatically after their last usage without performing garbage collection.

C(M) can be regarded as a strictly typed declarative functional language. In addition to the common
functional languages C(M) implements mathematical syntax, set-theoretic high-level structures and ex-
pressions and construction by induction. The high-level structures and expressions have similarities with
the ones in the SETL language but C(M) differs by its declarative nature and strong type checking.

1

3 Example

1 R is 2IN×IN;
2 closure : R → R;
3 closure(A) := T, where
4 T := induction
5 step 0 :
6 T (0) := A;
7 step n + 1 :
8 T (n+1) := T (n) ∪ {(a, c) | (a, b) ∈ T (n), (b, c) ∈ A};
9 until ∀(a, b) ∈ T (n), (b, c) ∈ A : ((a, c) ∈ T (n))
10 ;
11 ;
12 dump ← closure({(1, 2), (2, 3), (3, 5), (5, 10)});

1 R is 2^(IN*IN);

2 closure in R -> R;

3 closure(A) := T, where

4 T := induction

5 step 0:

6 T@0 := A;

7 step n+1:

8 T@n+1 := T@n \/ {(a,c) | (a,b) in T@n, (b,c) in A};

9 until forall (a,b) in T@n, (b,c) in A : ((a,c) in T@n)

10 ;

11 ;

12 dump <- closure({(1,2),(2,3),(3,5),(5,10)});

Perhaps the best introduction to C(M) is a short example. The following is a complete C(M) program
to construct the transitive closure of a finite relation of natural numbers. At the end the closure of a
concrete relation is dumped.

The program above is listed twice – first using the mathematical layout, and second, as plain text.
The compiler supports an automatic translation from the plain text into LaTeX for producing the
mathematical layout.

This program starts with the naming of the type 2IN×IN as R in Line 1. The largest part of this
program is the “closure” function definition in lines 3–11. As stated in Line 2 closure is of type R → R
i.e. a function which takes a parameter of type R and returns result of type R. In Line 3 the parameter
is named A and the result returned is named T . T is defined in the where block in lines 4–11. C(M)
uses the semicolon in line 11 to recognise the where block end. T is defined by an induction statement
in lines 4–10. The semicolon in Line 10 marks the end of the induction statement. The base – step 0

of the induction sets the base of T to A in Line 6. The inductive step defines the (n+ 1)th value of T as
T (n) ∪

{
(a, c)

∣∣ (a, b) ∈ T (n), (b, c) ∈ A
}

in Line 8. In this assignment T (n+1) becomes the union of T (n)

with the set of all (a, c), where (a, b) runs through T (n) and (b, c) runs through A. The inductive step is
performed until the condition in Line 9 is satisfied. This condition states that for every (a, b) ∈ T (n) and
(b, c) ∈ A it holds that (a, c) ∈ T (n). This means that the inductive step will not extend T (n) anymore.
Line 12 dumps the closure of {(1, 2) , (2, 3) , (3, 5) , (5, 10)} to the output.

The compiler takes as input the plain text of the program (without the line numbering) and outputs
a C source code. Let the above program is presented in a file named example.cm. Then the compiler is
invoked by:

cm example.cm -o example.c

The file example.c will contain the corresponding C source code. Afterwards the C code has to be
compiled with the gcc compiler for producing an executable. Currently the C code generated by C(M)
contains nested functions, which are supported by gcc but are not ANSI C compatible. The compilation
is invoked by the following command:

gcc -fnested-functions -lm -o example example.c

2

In the newer versions (e.g 4.7) of gcc the option -fnested-functions has to be omitted. If no floating
point functions are used then the -lm option is not required.

The LaTeX layout is generated by the compiler in the following way:
cm -L example.cm -o example.tex

Afterwards the example.tex file has to be compiled with LaTeX.

4 Types

C(M) supports the following basic types: IN (IN) for natural numbers, IZ (ZZ) for integer numbers, IR
(IR) for real numbers and IB (IB) for boolean values. Those types are implemented in C as unsigned

long, long, double and unsigned long correspondingly. The type for matrix of real numbers is M(IR)
(M(IR)).

C(M) supports the following complex types:

• Tuples: if T 1,T 2,. . .,T n (T1, T2, . . . , Tn) are types then T 1 * T 2 * . . . * T n (T1×T2×. . .×Tn)
is the type of the n-tuples, whose i-th projection is of type T i (Ti).

• Lists: if T is a type then T^* (T ∗) is the type of the lists with elements of T .

• Sets: if T is a type then 2^T (2T) is the type of the sets with elements of T .

• Functions: if T 1 (T1) and T 2 (T2) are types then T 1 -> T 2 (T1 → T2) is the type of functions
with domain T1 and range T2.

Parentheses have to be used for type grouping. For example the type A×B×C indicates the type of
triples whose first, second and third projections are of types A, B and C correspondingly. (A×B)× C
indicates the type of pairs whose first projection is a pair of the types A and B and its second projection
is of type C.

The type STRING is predefined as IN∗.

5 Identifiers

The identifiers in C(M) have to start with a letter, can contain digits and can end with apostrophes.
The identifiers can also have indices. Some examples of identifiers are given below:

X X
X1s’’ X1s′′

X’ 3 X ′3
A’ p’ 3 A′p′

3

Inside an induction statement the inductive identifiers are followed by the index in the series in
parentheses:

A@0 A(0)

A’ 2@n A′2
(n)

A’@n c+1 A′
(nc+1)

6 Constants

The following types of constants are supported in C(M) :
Booleans true, false
Natural numbers 3, 2014
Real numbers −25.349, 2.1234E−23
Strings ”Example”, ”This is a sentence.”
The empty set {} (∅)
The null list [] (ε)

The constants are the simplest expressions.

3

7 Terms

C(M) allows the grouping of identifiers into tuples for supporting of parallel assignments or multiple
definitions. Tuples of identifiers can be recursively grouped into terms. Examples of terms are:

A
(a, b)
(a, ((b, c′, d), f1))

Terms can be used for running arguments in set builder and quantifier expressions (see next section).
In those cases the term can contain constants as well for constraining the running arguments. For
example if S is a set of triples then in a set builder (a, 0, X ′) ∈ S will run through the triples of S with
second projection equal to 0.

8 Expressions

Constants and identifiers which are already defined are the simplest expressions.

Tuples

(a,b,c,d) (a, b, c, d) tuple construction
Proj(2,T) Proj2(T) tuple projection
Proj((2,4),T) Proj(2,4)(T) tuple projection to subtuple

Comparisons

E 1=E 2 E1 = E2 equal
E 1~=E 2 E1 6= E2 not equal
E 1<E 2 E1 < E2 lower (for numbers only)
E 1<=E 2 E1 ≤ E2 lower or equal (for numbers only)
E 1>E 2 E1 > E2 greater (for numbers only)
E 1>=E 2 E1 ≥ E2 greater or equal (for numbers only)

Sets

|S| |S| number of elements in the set S
{a,b,c,d} {a, b, c, d} set of items
{n 1..n 2} {n1, . . . , n2} set of the numbers from n1 to n2

S 1/\S 2 S1 ∩ S2 intersection
S 1\/S 2 S1 ∪ S2 union
S 1\S 2 S1 \ S2 difference
S 1 subset S 2 S1 ⊂ S2 subset
S 1 ~subset S 2 S1 6⊂ S2 non-subset
S 1 meets S 2 S1 ∩ S2 6= ∅ meets
S 1 ~meets S 2 S1 ∩ S2 = ∅ meets not
a in S a ∈ S membership of a in S
a ~in S a 6∈ S non-membership of a in S
union(S)

⋃
(S) union of the element in the sets in S

2^S 2S the set of all subsets of S
S 1*S 2*...*S k S1 × S2 × . . .× Sk cartesian product
{E | t 1 in S 1 & C 1,

t 2=E 2 & C 2, ...,t k in

S k & C k}

{E | t1 ∈ S1 & C1, t2 =
E2 & C2, . . . , tk ∈ Sk & Ck}

set builder, where E is an expression, ti
are terms, Si and resp. Ei are sets or
lists and resp. expressions, and Ci are
optional conditional expressions.

Relation (set of tuples)

All set expressions plus the following:

4

Proj(2,R) Proj2(R) Relation projection
Proj((2,4),R) Proj(2,4)(R) Relation projection to subrelation
Func(1,2,R) F1→2(R) functionalization of R

Function

Functions are sets of pairs, which have unique mapping. All expressions on sets and relations are
applicable plus the following:

!f(x) !f(x) true if f(x) is defined, false otherwise
f| E f |E restriction of f to the domain given by E

Lists

|L| |L| length of the list L
[A,B,C,D] 〈A,B,C,D〉 list of items
[n 1..n 2] 〈n1, . . . , n2〉 list of the numbers from n1 to n2

L 1.L 2 L1 · L2 concatenation of lists
L[i] (L)i i-th element of a list
L[i..j] (L)i,...,j sublist from i-th to j-th element
#(a,L) #L(a) the index of a in L
a in L a ∈ L membership of a in L
a ~in L a 6∈ L non-membership of a in L
flatten(L)

⊙
(L) list of the elements of the lists in L

[E | t 1 in S 1 & C 1,

t 2=E 2 & C 2, ...,t k in

S k & C k]

〈E | t1 ∈ S1 & C1, t2 =
E2 & C2, . . . , tk ∈ Sk & Ck〉

list builder, where E is an expression,
ti are terms, Si and resp. Ei are sets or
lists and resp. expressions, and Ci are
optional conditional expressions.

Lists and sets of numbers

min(L) min(L) minimal element in the list/set
max(L) max(L) maximal element in the list/set
sum(L)

∑
(L) sum of the elements in the list/set

prod(L)
∏

(L) product of the elements in the list/set

Boolean operators

~E ¬E negation
E 1/\E 2 E1 ∧ E2 conjunction
E 1\/E 2 E1 ∨ E2 disjunction
E 1->E 2 E1 → E2 implication
E 1<->E 2 E1 ↔ E2 equivalence
forall t 1 in S 1,...,t k in S k:(E) ∀t1 ∈ S1, . . . , tk ∈ Sk : (E) universal quantifier
exists t 1 in S 1,...,t k in S k:(E) ∃t1 ∈ S1, . . . , tk ∈ Sk : (E) existential quantifier

Expressions on natural, integer and real numbers

|E| |E| absolute value
-E −E negative value
+E +E positive value

E 1^E 2 EE2
1 power

E 1*E 2 E1 × E2 multiplication
E 1/E 2 E1/E2 devision
E 1+E 2 E1 + E2 addition
E 1-E 2 E1 − E2 substraction
E 1 rem E 2 E1 remE2 reminder

5

Expressions on matrices

-M −M negative value
+M +M positive value
M‘ MT transposition

M 1^E 2 ME2
1 power (not implemented yet)

M 1*M 2 M1 ×M2 multiplication
M 1/M 2 M1/M2 devision (not implemented yet)
M 1\M 2 M1 \M2 left devision (not implemented yet)
M 1+M 2 M1 + M2 addition
M 1-M 2 M1 −M2 substraction
M 1.^E 2 M1 · ∧M2 dot power
M 1.*M 2 M1 · ×M2 dot multiplication
M 1./M 2 M1 · /M2 dot devision
M 1.M 2 M1 ·M2 horizontal concatenation of matrices

M 1\\M 2
M1

M2
vertical concatenation of matrices

[:A,B,C,D:] [A,B,C,D] 1-row matrix
M[i,j] Mi,j matrix element
M[L 1,L 2] ML1,L2 submatrix with indices L1 × L2

[:E|i=1..n:] [E|i = 1, . . . , n] 1-row matrix builder
[:E|i=1..n,j=1..m:] [E|i = 1, . . . , n, j = 1, . . . ,m] matrix builder

Conditional expressions

? E 1 if C 1

E1 if C1

E2 if C2

...
Ek if Ck

Ek+1 otherwise

E1 if C1

? E 2 if C 2 E2 if C2

...
? E k if C k Ek if Ck

? E k+1 otherwise Ek+1 otherwise

6

Build-in functions, constants and objects

Function Type Description
true, false IB boolean constants
set(L) T ∗ → 2T the set of the elements in the list

L
elementOf(S) 2T → T returns one element of S

argmin(f, L), argmax(f, L)

(T → IN)× T ∗ → T
(T → ZZ)× T ∗ → T
(T → IR)× T ∗ → T
(T → IN)× 2T → T
(T → ZZ)× 2T → T
(T → IR)× 2T → T

returns a value in L for which the
function f is minimal/maximal

subst(L, i, v) T ∗ × IN× T → T ∗ substitution of the i-th element
in L with v

substl(L, I, V) T ∗ × IN∗ × T ∗ → T ∗ substitution of the elements with
indices I in L with V

rows(M), cols(M) M(IR)→ IN number of rows/columns of M
substMat(M, i, j, v) M(IR)× IN× IN× IR→M(IR) substitution the element at (i, j)

in M with v
substSubMatrix(M, I, J,M ′) M(IR)× IN∗ × IN∗ ×M(IR)→M(IR) substitution the submatrix at in-

dicies I × J in M with M ′

AND(a, b),OR(a, b),XOR(a, b) IN× IN→ IN bitwise and/or/exclusive or of a
and b

NOT(a) IN→ IN bitwise negation of A
SHL(a, b),SHR(a, b) IN× IN→ IN shift left/right of a with b bits
sin(x), cos(x), tan(x) IR→ IR trigonometric functions
asin(x), acos(x), atan(x) IR→ IR inverse trigonometric functions
sinh(x), cosh(x), tanh(x) IR→ IR hyperbolic trigonometric func-

tions
asinh(x), acosh(x), atanh(x) IR→ IR inverse hyperbolic trigonometric

functions
sqrt(x), exp(x) IR→ IR square root and exponent func-

tions
log(x), log 2(x), log 10(x) IR→ IR natural, base 2 and base 10 log-

arithm functions
erf(x), tgamma(x), lgamma(x) IR→ IR error function, gamma and loga-

rithm of gamma functions
floor(x), ceil(x), trunc(x) IR→ IR floor, ceiling and truncate func-

tions
round(x), rint(x) IR→ IR rounding functions
lrint(x) IR→ ZZ rounding to whole number
str(i) IN→ STRING textual representation of i
loadBin(F) STRING→ IN∗ loads the binary file F and re-

turns the list of its bytes
loadText(F) STRING→ STRING loads the text file F and returns

its UTF-8 symbols
restore(F) STRING→ T restores an object stored in the

file F
restoreBin(F) STRING→ T restores an object stored in the

binary file F
argc IN number of command line argu-

ments passed to the program
argv(i) IN→ STRING the i-th command line argument

passed to the program
mainResult IN if assigned it will be the exit sta-

tus of the program execution

7

9 Statements

Any program in C(M) is a list of statements. There are only 4 kinds of statements – type definitions,
declarations, assignments and supplementary actions. Any statement must end with a semicolon.

9.1 Type definition

A type definition is used for naming a complex type. A type definition is in the form:
ID is TYPE;

For example the statement in Line 1 of our example is naming the type 2IN×IN to R.

9.2 Declaration

The declaration statements are used for declaring the types of the used terms and identifiers. A decla-
ration is required in the following two cases: when the term is defined by induction1 or when a function
is defined with an expression from its parameters. In case the type of a term can be inferred from the
expression, which has been assigned to the term, the declaration is not obligatory. Though in some cases
the type inferred from the expression might not be what is needed and a declaration has to correct it.
The declaration statement is in the form:

TERM1, TERM2, ..., TERMn in TYPE;

The statement in Line 2 of the example declares the type of “closure” to R → R.

9.3 Assignment

The assignments are the most commonly used statements in C(M) . They are used to calculate and
assign a value to a term. The general form of an assignment statement is:

TERM := ASSIGNMENT;

If the term is a name of a function then the function can be defined on its parameters in the following
way:

ID(PARAMETER 1,PARAMETER 2,...,PARAMETER k) := ASSIGNMENT;

There are 4 types of assignments – simple assignment, assignment with where block, case assignment
and inductive assignment.

9.3.1 Simple assignment

The simple assignment is an expression. for example the statements in Lines 6 and 8 in our example are
simple assignments.

TERM := EXPRESSION;

9.3.2 Assignment with where block

The assignment statements with a where block are like the simple assignments but followed by a block
of additional statements after the where keyword. Those additional statements are usually required for
defining the objects used in the expression. The general form of such a assignment statement is:

TERM := EXPRESSION, where

STATEMENT 1;

STATEMENT 2;

...

STATEMENT k;

;

In our example an assignment statements with a where block is given in Lines 3–11.

1Unless its type is not implicitly known.

8

9.3.3 Case assignment

The case assignment consists of a list of pairs and expressions. The expression of the first fulfilled
condition is assigned to the term. An otherwise expression is optional and will be assigned in case non
of the conditions holds:

TERM :=

case CONDITION 1 : EXPRESSION 1

case CONDITION 2 : EXPRESSION 2

...

case CONDITION k : EXPRESSION k

otherwise EXPRESSION k+1

;

Each expression might be followed by a where block. The general form is:
TERM :=

case CONDITION 1 : EXPRESSION 1, where

STATEMENTS

case CONDITION 2 : EXPRESSION 2, where

STATEMENTS

...

9.3.4 Inductive assignment

The inductive assignment is used for inductive constructions of terms. The general form is:
TERM := induction

step 0 :

STATEMENTS

step n+1 :

STATEMENTS

until CONDITION

;

The base of the induction is defined by the statements after the step 0 keyword. The inductive step
is defined by the statements after the step n+1 keyword. The inductive steps are repeated until the
condition holds. In Lines 4–10 of our example T is defined by an inductive statement.

9.4 Supplementary actions

Besides the definitions, declarations and assignments C(M) supports supplementary actions for mainly
for outputting and dumping of resulting objects. The general form is:

ACTION <- EXPRESSION;

In line 12 of the example the closure of the given relation is dumped out. Currently the following actions
are implemented:
dump <- E; dumps the given expression to the standard output
print <- E; the expression, which must be a STRING is printed on the standard output
assert <- E; if the expression of type IB does not hold the program halts
store <- (F,E); the expression E will be stored in the file with name F (must be a STRING)
storeBin <- (F,E); the expression E will be stored in binary format in the file with name F (must

be a STRING)
saveBin <- (F,L); the list of bytes L (must be IN∗) will be stored in the binary file with name F

(must be a STRING)
saveText <- (F,T); the text T (must be STRING) will be stored in the UTF-8 text file with name

F (must be a STRING)
import <- F; import the file with name F (must be a STRING constant) to the program (in

case of multiple imports of the same file, the file will be imported only once)
include <- F; include the source from file with name F (must be a STRING constant) to the

program at the corresponding place. (Multiple inclusion of the same file are
allowed.)

9

10 Comments

In the C(M) programs everything after // till the end of the line is regarded as a comment. If the
comment is placed between two statements it will appear also in the LaTeX code. Thus the comments
can contain LaTeX commands which will be considered in the LaTex compilation.

11 The example revisited

Looking at the example in Section 3 we can find two major sources of inefficiencies.
First, all the elements of T (n) are considered to be extended transitively with elements of A at each

step, although it is clear that the elements considered on previous steps can not deliver new pairs. This
can be avoided by considering at step n + 1 only the n + 1-st element of T (n). The second deficiency is
that after choosing a pair (a, b) from T to be extended, we run through all pairs from A to find the ones
with first coordinate b. Instead of that we can construct a function A′, which for a given b returns the
set of all c, such that (b, c) ∈ A. In the new implementation given below we define T as a pair of numbers
in Line 4. A′ is defined in Line 5. The type of A′ will be IN → 2IN. In Lines 6–13 T is constructed
inductively. The main inductive step is given in Line 11 where T (n) is extended with the extensions of
the n + 1-st pair in T (n). The induction ends when all elements of T (n) are processed.

1 R is 2IN×IN;
2 closure : R → R;
3 closure(A) := set(T), where
4 T ∈ (IN× IN)∗;
5 A′ := F1→2(A);
6 T := induction
7 step 0 :
8 T (0) := A as (IN× IN)∗;
9 step n + 1 :
10 (a, b) := (T (n))n+1;

11 T (n+1) := T (n) ·
{
〈(a, c) | c ∈ A′(b) & (a, c) 6∈ T (n)〉 if ! A′(b)
ε otherwise

;

12 until n =
∣∣T (n)

∣∣
13 ;
14 ;
15 dump ← closure({(1, 2), (2, 3), (3, 5), (5, 10)});

A Syntax definiton

The formal syntax is defined using the LLgen notation (http://www.cs.vu.nl/~ceriel/LLgen.html).

%token ID; /* identifier */

%token IDN; /* inductive identifier */

%token STRING; /* string constant */

%token NUM; /* natural number constant */

%token RNUM; /* real number constant */

%token restr; /* |_ */

%token in; /* in */

%token subset; /* subset */

%token meets; /* meets */

%token cap; /* /\ */

%token cup; /* \/ */

%token le; /* <= */

%token ge; /* >= */

%token dd; /* .. */

%token forall; /* forall */

10

%token exists; /* exists */

%token if; /* if */

%token otherwise; /* otherwise */

%token where; /* where */

%token eqv; /* <-> */

%token until; /* until */

%token induction; /* induction */

%token step; /* step */

%token is; /* is */

%token def; /* := */

%token arrow; /* -> */

%token rem; /* rem */

%token as; /* as */

%token case; /* case */

%token opmat; /* [: */

%token clmat; /* :] */

%token newrow; /* \\ */

%token larrow; /* <- */

%token proj; /* Proj */

%token func; /* Func */

%token defined;

%start setlang, STMTL;

UNOP : ’+’ | ’-’ | ’~’ | ’!’ | cup | ’.’ ;

MULOP : ’/’ | ’\\’ | restr | rem | ’.’ [’*’ | ’/’ | ’^’]? ;

ADDOP : ’+’ | ’-’ | cap | cup | arrow | eqv ;

EQOP : ’=’ | ’<’ | ’>’ | le | ge | in | subset | meets | ’~’ [in | subset | meets | ’=’];

QUANTOR : forall | exists ;

TYPE : DTYPE [arrow DTYPE] * ;

DTYPE : CTYPE [’*’ CTYPE] * ;

CTYPE : BTYPE [’^’ ’*’] * ;

BTYPE : ID [’(’ ID ’)’] ? | ’(’ TYPE ’)’ | NUM ’^’ BTYPE ;

AEXPR :

NUM | RNUM | STRING | ID | IDN |

CASE |

’|’ EXPR ’|’ |

’(’ EXPRL ’)’ |

’#’ ’(’ EXPR ’,’ EXPR ’)’ |

proj ’(’ EXPR ’,’ EXPR ’)’ |

func ’(’ EXPR ’,’ EXPR ’,’ EXPR ’)’ |

if ’(’ EXPR ’,’ EXPR ’,’ EXPR ’)’ |

’{’ [EXPR [’,’ EXPRL | dd EXPR | ’|’ TERMEXPRL] ?] ? ’}’|

’[’ [EXPR [’,’ EXPRL | dd EXPR | ’|’ TERMEXPRL] ?] ? ’]’|

opmat EXPR [’,’ EXPRL | ’|’ [ID ’=’ NUM dd EXPR] +2] ? clmat |

QUANTOR TERMEXPRL ’:’ ’(’ EXPR ’)’ ;

CASE : ’?’ EXPR [if [defined | EXPR] [CASE | otherwise]] ;

POSOP : ’(’ EXPR ’)’ | ’[’ EXPR [dd EXPR | ’,’ EXPR] ? ’]’ | ’‘’ ;

POSEXPR : AEXPR POSOP * ;

11

UNEXPR : UNOP * POSEXPR;

POWEXPR : UNEXPR [’^’ UNEXPR] *;

TMSEXPR : POWEXPR [’*’ POWEXPR] * ;

MULEXPR : TMSEXPR [MULOP TMSEXPR] * ;

ADDEXPR : MULEXPR [ADDOP MULEXPR] * ;

MATEXPR : ADDEXPR [newrow ADDEXPR] * ;

EQEXPR : MATEXPR [EQOP MATEXPR] * ;

EXPR : EQEXPR [as TYPE] ? ;

EXPRL : EXPR [’,’ EXPR] * ;

TERM : ID | IDN | NUM | RNUM | STRING | ’(’ TERML ’)’ ;

TERML : TERM [’,’ TERM] * ;

TERMEXPR : TERM [in | ’=’] EXPR [’&’ EXPR]? ;

TERMEXPRL : TERMEXPR [’,’ TERMEXPR]* ;

ASSGNMNT : EXPR [’,’ where STMTL] ? |

[case EXPR ’:’ EXPR [’,’ where STMTL]?] + [otherwise ’:’ EXPR [’,’ where STMTL]?] ? |

induction

step NUM ’:’ STMTL

step ID ’+’ NUM ’:’ STMTL

until EXPR ;

STMT : TERML [is TYPE |

in TYPE |

TERM ? def ASSGNMNT |

larrow EXPR

] ;

STMTL : [STMT ’;’]+ ;

12

