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ABSTRACT

Neural text-to-speech (TTS) systems have recently demonstrated the
ability to synthesize high-quality natural speech. However, the infer-
ence latency and real-time factor (RTF) of such systems are still too
high for deployment on devices without specialized hardware. In
this paper, we describe StreamSpeech – an optimized architecture
of a complete TTS system that produces high-quality speech and
runs faster than real time with imperceptible latency on resource-
constrained devices by utilizing a single CPU core. We divide the
standard TTS processing pipeline into three phases with respect to
their operating resolution and optimize them separately. Our main
novel contribution is the introduction of a lightweight convolutional
acoustic model decoder, which enables streaming and low-latency
speech generation. Experiments show that the resulting complete
TTS system achieves 79 ms latency, 0.155 RTF on a low-power note-
book x86 CPU and 276 ms latency, 0.289 RTF on a mid-range mo-
bile ARM CPU with no noticeable difference in the quality of the
generated speech.

Index Terms— Text-to-speech optimizations, low latency, on-
device synthesis

1. INTRODUCTION

Modern TTS systems employ deep neural networks to synthesize
high-quality natural-sounding speech. However, such systems are
usually very computationally demanding and require specialized
hardware (e.g. GPUs and TPUs) to run in real time. Recently,
non-autoregressive acoustic models such as FastPitch [1] and Fast-
Speech 2 [2] have been proposed to significantly increase the infer-
ence speed over previous autoregressive models [3]. Furthermore,
linear prediction has been utilized in the LPCNet [4] vocoder to
greatly improve the efficiency of neural speech synthesis. However,
the inference latency and RTF of modern TTS systems based on
the standard FastSpeech 2 and LPCNet models are still too high
for deployment in resource-constrained scenarios and on devices
without specialized hardware.

To address this problem, recent research has been focused on
the optimization of both the acoustic model and the vocoder net-
works. LightSpeech [5] leverages neural architecture search to
find lightweight architectures to further speed up the inference of
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FastSpeech 2, while maintaining the voice quality. It also utilizes
depth-wise separable convolutions (SepConv) [6], which are con-
siderably more memory and computationally efficient compared to
vanilla convolutions. Many LPCNet variants have also been studied
with the aim to reduce the complexity of the model without sacri-
ficing speech quality. DurIAN [7], FeatherWave [8] and Subband
LPCNet [9] adopt multi-band signal processing to generate several
speech samples in parallel in a single step. In [10], the authors
propose using tensor decomposition to reduce the complexity of the
dual fully-connected layer of the vocoder. More recently, Valin et
al. [11] have combined weight quantization and hierarchical softmax
to further improve the efficiency of LPCNet.

In contrast, research on the optimization of a complete TTS
system aiming to achieve low-latency on-device synthesis has been
more limited [12, 13, 14, 15]. He et al. [14] and Wu et al. [15]
propose to use a recurrent acoustic decoder with a multi-rate atten-
tion mechanism that attends to lower rate features on the character,
syllable, and word levels instead of higher rate frame-level features.
In order to maintain inference speed independent of the input utter-
ance length, they enforce a hard limit on the length of the attention
context via dynamic max pooling. Others [16] fix the computational
bottlenecks of the original Tacotron 2 [3] decoder by decreasing the
LSTM width and progressively decreasing the receptive fields of the
post-net convolutions. They also demonstrate that many instances
of the LPCNet vocoder can be used to process independent parts of
the input Mel spectrogram in parallel on separate threads.

In this paper, we describe StreamSpeech – an optimized TTS ar-
chitecture based on FastSpeech 2 and LPCNet that produces 24 kHz
high-quality speech and runs faster than real time with imperceptible
latency on resource-constrained devices. Contrary to the work men-
tioned above, our approach does not employ recurrent or attention-
based acoustic decoders. Moreover, we focus on reducing the total
computational load of the vocoder, instead of using multiple threads
to run it in parallel.

The main contributions of our work can be summarized as fol-
lows. (1) We divide the TTS processing pipeline into three phases in
correspondence with their operating resolutions: character-level
(Text Analysis and FastSpeech 2 encoder), frame-level (Fast-
Speech 2 decoder), and sample-level (LPCNet), which we optimize
separately. (2) In order to optimize the computational complexity
of the FastSpeech 2 encoder, we utilize depth-wise separable con-
volutions. We demonstrate that the low character-level resolution
of the encoder makes streamability and further optimizations of
this module unnecessary. (3) We replace the non-autoregressive
transformer-based FastSpeech 2 decoder with a lightweight stream-
able convolutional decoder to achieve constant low latency without



Text Analysis Encoder Decoder Vocoder 
(LPCNet*)

Character 
Resolution

Frame 
Resolution

Sample 
Resolution

Acoustic Model (FastSpeech 2*) 

Fig. 1. Overall architecture of the TTS system. (*) The baseline sys-
tem utilizes the original FastSpeech 2 and LPCNet models, whereas
StreamSpeech implements the optimizations described in Section 3.

affecting the synthesized speech quality. (4) In terms of inference
speed, we focus on optimizing the vocoder, which operates at the
highest sample-level resolution in the system. We employ multi-
band signal processing and hierarchical softmax to significantly
improve the efficiency of LPCNet, while maintaining the voice
quality.

2. BASELINE ARCHITECTURE

Following the recent trend, our TTS processing pipeline consists of
three main modules: text analysis, acoustic model and vocoder (see
Figure 1).

Text analysis. The text analysis module performs text nor-
malization and verbalization (expansion of numbers, abbreviations,
etc.) using contextual rules and dictionaries. It also performs
grapheme-to-phoneme conversion using a combination of rules
and a transformer-based neural network. 1 The rules and dictio-
naries are implemented as a cascade of 26 finite-state transducers
(FSTs) [17, 18].

Acoustic model. The acoustic model is based on the Fast-
Speech 2 architecture [2]. For the baseline we use the original
FastSpeech 2 model, which has 27M parameters. It is composed of
an encoder – which consists of 4 Feed-Forward Transformer (FFT)
blocks, duration, pitch, and energy predictors, and a decoder – which
consists of 4 FFT blocks and a final spectrogram projection.

Vocoder. The vocoder is based on the LPCNet architecture [4].
However, the 16 kHz sampling rate of the speech generated by the
original implementation does not provide satisfactory sound qual-
ity. Therefore, for our baseline implementation we use a modified
LPCNet model, which synthesizes 24 kHz speech. Following Feath-
erWave [8], we increase the receptive field of the frame rate network
by using a stack of five 1 × 3 one-dimensional convolutions with
256 channels, each followed by a tanh activation. Additionally, we
modify the vocoder to accept the output features of FastSpeech 2 –
80-dimensional Mel spectrograms representing 10.7-ms frames (256
samples), as input. To account for the increased sampling rate, we
extract 24 (instead of 16) linear prediction coefficients from the input
Mel spectrograms.

3. STREAMSPEECH ARCHITECTURE

The processing pipeline of the presented baseline architecture con-
sists of three phases that require operation in increasingly finer reso-
lutions (see Figure 1). In this section, we first present the framework
used for our performance evaluations. Then, we profile the baseline

1Our grapheme-to-phoneme approach is the subject of a forthcoming paper.

Module #Params x86 A76

LAT RTF LAT RTF

Text Anal. *6.5M 46 0.005 162 0.019
Encoder 15.2M 88 0.010 328 0.039
Decoder 11.6M 409 0.049 1676 0.199
Vocoder 1.7M 4 0.383 8 0.725

Total 35M 547 0.447 2174 0.982

Table 1. Profiling of the components of the baseline system. Latency
is given in milliseconds. The RTF is equal to the processing time
divided by the duration of the generated speech. (*) The text analysis
module also contains 26 FSTs.

system and propose several optimizations to its components. Each
optimization is motivated by the resolution at which the correspond-
ing component operates.

3.1. Performance analysis

The dataset used in all of our performance evaluations consists of
600 utterances with lengths uniformly distributed between 10 and
250 characters. The durations of the corresponding synthesized
speech vary between 0.85 and 16.23 seconds. The average utterance
length and duration are 127 characters and 8.34 seconds respec-
tively. We conduct all of our experiments on a low-power notebook
CPU (Intel Core i5-5257U @ 2.7 GHz, referred to as x86) and a
mid-range mobile CPU (Cortex-A76 @ 2.25 GHz, referred to as
A76) using a single core.

The measurements of the inference latency and speed of the
baseline system are presented in Table 1. The total latency of the
system is about 0.55 seconds on the x86 CPU and 2.2 seconds on
the A76 CPU. This heavily hampers the use of the system for inter-
active speech synthesis applications such as speech interfaces. The
high latency of the baseline system is caused by the Text Analysis,
FastSpeech 2 encoder and FastSpeech 2 decoder modules, because
they employ a global attention mechanism, which necessitates the
processing of the whole input and prohibits streaming. However,
three quarters of the latency is attributed only to the execution of
the FastSpeech 2 decoder, since it operates at the higher frame-level
resolution. Thus, we focus mainly on architectural changes to the
FastSpeech 2 decoder that make it streamable and substantially
reduce its latency. Additionally, we optimize the computational
complexity of the encoder to further improve the overall latency
of the system. In terms of inference speed, three quarters of the
computational load is due to the vocoder, because it operates at
a substantially higher resolution than the rest of the components.
Therefore, we also concentrate on significantly improving the effi-
ciency of LPCNet.

3.2. Acoustic model optimizations

To optimize the acoustic model, we first experimented with the au-
tomatically discovered architecture of LightSpeech [5], which has
been shown to achieve 6.5 times inference speedup. Even though
this modification decreased the latency of the complete TTS system
to around 0.5 seconds on the A76 CPU, this still limits its use on
mobile devices. Moreover, in our setup this resulted in perceptible
degradation in the quality of the generated speech. Therefore, we



Fig. 2. The architecture of a StreamSpeech decoder block. The StreamSpeech decoder consists of a stack of 5 blocks.

Architecture Variant x86 A76

LAT RTF LAT RTF

FFT Baseline 409 0.049 1676 0.199
+SepConv 197 0.024 749 0.090

StreamSpeech
Rate = 1 8 0.088 19 0.115
Rate = 6 9 0.024 22 0.057
Rate = ∞ 118 0.014 447 0.054

Table 2. Latency and RTF of the examined decoder architectures.

adopt a different approach.
Encoder. We speculate that in the FastSpeech 2 architecture

speech prosody is modeled mainly by the encoder, which utilizes
multi-head self-attention to capture long-term dependencies. Sim-
ilar to the work in [15], we decide to retain the non-streaming ar-
chitecture of the encoder so that it can better model the prosody of
longer utterances. In order to improve its efficiency, we substitute the
vanilla convolutions in the FFT blocks and the predictors with depth-
wise separable convolutions, as suggested in LightSpeech [5]. Ta-
ble 4 shows that this reduces the encoder’s parameters by a factor of
3.8 and its RTF by a factor greater than 3.3. It also demonstrates that
the low character-level operating resolution of the encoder makes
further optimizations and streaming of this module unnecessary.

Decoder. Table 2 demonstrates that by applying the same opti-
mizations as those for the encoder (+SepConv) improved the latency
and RTF of the baseline decoder by a factor greater than 2. However,
the resulting total system latency remains greater than 1 second on
A76 which is still too high for interactive applications required to run
on devices with limited computational capacity. Thus, we propose
major architectural modifications to the decoder.

We speculate that the role of the decoder in the FastSpeech 2
architecture is mainly to model the coarticulation phenomena of
speech production. Since coarticulation is a local occurrence, there
is no need of global information to resolve it. Therefore, we replace
the FFT blocks, which gather global information via an atten-
tion mechanism, with new convolutional blocks that capture local
context progressively layer by layer. As shown in Figure 2, the
StreamSpeech decoder blocks consist of a convolutional module
followed by a feed-forward module. We use the convolutional and
feed-forward modules introduced in the Conformer [19] speech
recognition model, because they have proven to be very effective
in capturing the relative offset-based local correlations in natural
speech. In our setup, we set the hidden dimension of the modules to
256 and the kernel size of the convolutions to 31. We observe that
a stack of 5 of the proposed blocks delivers speech quality which is
hardly distinguishable from that of the baseline model.

Since the StreamSpeech decoder architecture is feed-forward
and convolutional, it can be applied in a streaming way, which im-
plies constant latency and inference speed independent of the input
length. The latency of the decoder module represents the time delay

Vocoder Architecture x86 A76

LPCNet 0.383 0.725
+ Multi-Band 0.192 0.360

+ Hierarchical Softmax 0.123 0.202

Table 3. RTF of the examined vocoder architectures.

between receiving the result from the encoder and producing the first
Mel spectrogram. In the proposed architecture, the latency is deter-
mined entirely by the kernel size and padding of the convolutions,
and the number of stacked blocks. We use 5 blocks and convolu-
tions with kernel size 31 and padding 15. Therefore, to generate its
first Mel spectrogram the decoder has to process an input of length
91. After this initial sequence has been processed, the decoder can
continue to operate sequentially by consuming a single input and
producing a single output.

Processing inputs one by one results in the lowest latency. How-
ever, it causes inferior utilization of low-level SIMD instructions [20,
21], which substantially increases the RTF. To strike balance be-
tween latency and RTF, we parameterize the streaming mode of the
decoder so that it processes simultaneously Rate number of inputs
in a single step. To measure its optimal RTF, we also profile the
decoder in non-streaming mode (Rate = ∞), in which the whole
input is processed in parallel.

Table 2 presents the latency and RTF of the StreamSpeech de-
coder. Operating in streaming mode with Rate = 1, the proposed
approach drastically reduces the latency compared to the FFT-based
architectures, rendering it practically insignificant. On the x86 CPU,
however, this is at the expense of a 3.66 times increase in the RTF
with respect to the SepConv FFT variant and 6.28 times increase
with respect to Rate = ∞. Table 2 also shows that streaming
with Rate = 6 causes insignificant increase in latency with respect
to Rate = 1, while achieving RTF which is close to the optimal
(Rate = ∞). Thus, in StreamSpeech, we utilize Rate = 6.

3.3. Vocoder optimizations

The original LPCNet vocoder is designed to predict audio signals
sample by sample, which significantly slows down the audio gener-
ation process. We adopt the multi-band parallel generation approach
[7, 8, 9] and modify the original LPCNet model to take inputs from
multiple subbands and predict excitations for all subbands simul-
tanously through multiple dual fully-connected and softmax layers.
Using this approach, the audio in each subband is downsampled by
a factor of N (the number of frequency bands). In our setup, we
employ 4 frequency bands and analysis/synthesis FIR filters of order
64. Table 3 shows that by using multi-band processing, we achieve
twofold inference speedup.

Detailed analysis of the performance of the multi-band LPCNet
revealed that at least 45% of the computational load is focused on the
evaluation of the 4 dual fully-connected layers and the softmax acti-



Module #Params x86 A76

LAT RTF LAT RTF

Text Anal. 6.5M 46 0.005 162 0.019

Encoder 4M 23 0.003 89 0.011
(-11.2M) (-65) (-0.007) (-239) (-0.028)

Decoder 3.7M 9 0.024 22 0.057
(-7.9M) (-400) (-0.025) (-1654) (-0.142)

Vocoder 1.7M 1 0.123 3 0.202
(-3) (-0.260) (-5) (-0.523)

Total 15.9M 79 0.155 276 0.289
(-19.1M) (-468) (-0.292) (-1898) (-0.693)

Table 4. Profiling of the components of StreamSpeech. The num-
bers in green show the reductions with respect to the baseline system.

vations. Thus, we adopt the hierarchical softmax approach of Valin
et al. [11] to represent the output distribution of each frequency band
as an 8-level binary tree, with each branch probability being com-
puted as a sigmoid output. Thereby, we reduce the number of dual
fully-connected outputs that have to be evaluated during sampling
from 256 to 8. The results (see Table 3) demonstrate that by using
hierarchical softmax we achieve 36% improvement in the RTF on
the x86 CPU and 44% on the A76 CPU.

4. PERFORMANCE EVALUATION

In Table 4, we present the performance of the StreamSpeech TTS
system along with the achieved improvements with respect to the
baseline. The experiments are conducted within the framework de-
scribed in Subsection 3.1. The StreamSpeech architecture achieves
79 ms latency, 0.155 RTF on the x86 CPU and 276 ms latency,
0.289 RTF on the A76 CPU. Next, we analyze the effect of the input
utterance length on the performance of the system.

The decoder and the vocoder of the StreamSpeech system have
constant latency and RTF that are not affected by the length of the
input. However, the text analysis and the encoder modules operate
on the whole input sequence in a non-streaming manner. Table 4
demonstrates that the vocoder is still responsible for at least 70% of
the computational load of the system. This, combined with the con-
stant RTF of the vocoder, means that the RTF of the complete system
will stay practically constant for utterances of reasonable length. The
latency, on the other hand, behaves differently. Figure 3 shows the
dependency of the latency of the baseline and of the StreamSpeech
systems on the utterance duration. The graph demonstrates the ac-
complished drastic improvements in the relation between latency
and utterance duration. It also highlights the fact that the Stream-
Speech system manages to maintain low latencies (under 150 ms)
even for long utterances.

5. QUALITY EVALUATION

We conduct experiments to assess the quality of the speech syn-
thesized with StreamSpeech and compare it with that of the base-
line. We train all acoustic models with the scheme from [2] and all
vocoders with the scheme from [4]. In the experiments, we compute
three objective measures: Mel cepstral distortion (MCD), log-F0
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Fig. 3. Latency of the baseline and the StreamSpeech TTS systems
with respect to the utterance duration measured on the x86 CPU.

Architecture MCD F0 RMSE CER %

Baseline 5.59 ± 0.54 0.344 ± 0.104 1.39
+ SepConv 5.59 ± 0.53 0.319 ± 0.092 1.34

+ ConvDec 5.53 ± 0.54 0.321 ± 0.101 1.49
+ MB 5.67 ± 0.54 0.313 ± 0.092 1.49

+ HSM 5.60 ± 0.54 0.318 ± 0.103 1.44

+ NR 6.45 ± 0.92 0.320 ± 0.096 1.52

Table 5. Effect of the proposed optimizations on several objective
measures. SepConv stands for “separable convolutions”, ConvDec
for “convolutional decoder”, MB for “multi-band”, HSM for “hier-
archical softmax” and NR for “noise reduction”.

root mean square error (F0 RMSE) and character error rate (CER)
of a neural speech recognition system, on 130 held-out utterances.

Table 5 demonstrates how the progressive application of the
proposed optimizations affects the objective measures. In terms of
MCD, StreamSpeech (+HSM in Table 5) achieves the same result as
the baseline. On the other hand, it improves the result of the base-
line on the F0 measure. The improvement occurs when we employ
multi-band processing in the vocoder, since then the lowest band,
which contains the base frequency, obtains a separate term in the loss
function. The difference between the baseline and StreamSpeech in
terms of CER is insignificant. 2

In our last experiment (+NR in Table 5), we apply a threshold
when sampling from the distributions generated by the vocoder to
reduce the excessive noise [4]. The results show deterioration in the
objective measures, which can be explained with the fact that the
vocoder model is trained without applying the sampling threshold.
However, subjective evaluations demonstrate the benefits of using
the threshold in terms of noise reduction and reveal no perceptible
quality degradation. Audio samples are available online. 3

6. CONCLUSION

In this work, we propose several architectural modifications and
optimizations of a complete TTS system. We demonstrate that

2Throughout the development of StreamSpeech several internal subjective
evaluations have also demonstrated no degradation in speech quality.

3https://lml.bas.bg/˜gshopov/tts-arch.html

https://lml.bas.bg/~gshopov/tts-arch.html


the transformer-based FastSpeech 2 decoder can be replaced with
a lightweight streamable convolutional decoder to achieve a dra-
matic latency reduction. Additionally, we significantly speedup
the FastSpeech 2 encoder and the LPCNet vocoder. The result-
ing StreamSpeech architecture achieves low latency and faster than
real time speech synthesis on resource-constrained devices without
degradation in the quality of the produced speech. The architecture
was implemented in the Bulgarian TTS engine NeuralSpeechLab
which is widely used by the visually impaired people in Bulgaria. 4
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