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Abstract

The paper presents the results of a project com-
pleted by the authors for realizing a contin-
uous speech recognition system for Bulgarian.
The state-of-the-art speech recognition technol-
ogy used in the system is discussed. Special
attention is given to the problems with some
speci�cs of the Bulgarian language namely the
large vocabulary (450000 wordforms). Some im-
plementation details of the language module are
given. At the end the paper provides evaluation
of the accuracy of recognition.
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1 Introduction

Speech is a preferable medium for enabling comfort-
able and e�ective human-computer interface. This ex-
plains the wide interest in speech technology. There
are a number of implementations of computer speech
synthesis systems, which deliver intelligible and nat-
urally sounding voices. For Bulgarian the SpeechLab
system [1] is widely used by the visually impaired peo-
ple.
Speech recognition is a considerably more di�cult

problem especially in the case of continuous speech and
large vocabulary. There exist sophisticated implemen-
tations for English and some other major European
and Asian languages. There are no reports for a large
vocabulary continuous speech recognition (LVCSR)
systems for Bulgarian. This paper will present the
result of a project for realizing a LVCSR system for
Bulgarian, which has been executed by the authors.
After some background information given in the

next section we will describe the basic modules of our
system. Section 3 and Section 4 will provide tech-
nical details of the Bulgarian acoustic and language
models correspondingly. The recognition process is
discussed in Section 5. In Section 6 we present the
implementation details of the language model and Sec-
tion 7 shows our accuracy evaluation. The conclusion

presents some general discussions and further develop-
ment directions.

2 Background

The problem of speech recognition can be considered
as the task to �nd the set of possible word sequences
which sound close to the observed speech signal and
are admissible according to a given language model.
The recognition of isolated words is signi�cantly sim-
pler. This task can be solved using various techniques
with modest computational e�orts. The computa-
tional complexity might be linear in regards of number
of words in the vocabulary and no language model is
required. A LVCSR system has to recognize a sequence
of words from a large vocabulary without information
of the word boundaries. A naive method would re-
quire an exponential number of word permutations to
be considered.
The state-of-the-art approach to this problem is the

Hidden Markov Model (HMM) framework. An HMM
represent a statistical process, where the elements of
a sequence of observed variables are regarded as emis-
sions of the state variables in a Markov chain. The
observed variables in our case represent the character-
istics of a short slice (frame) of the speech signal. The
states in the Markov chain represent the phases of the
phonemes, which we assume to be pronounced.

3 Acoustic model

Our implementation of the acoustic model consists of
two parts. The �rst part is the digital signal process-
ing (DSP) module, which extracts a vector of features
for each frame of the speech signal. The second part
consists of the phoneme models.
The audio input is sampled at 16 KHz. First an em-

phasis �lter is applied for emphasizing the higher fre-
quencies. Afterwards, the signal is sliced into frames
using a 30 ms Hamming window in 10 ms steps rolling.
The next step is extracting the most characteristic, in
respect to the human perception, features of the sig-
nal. For that purpose we extract the Mel-frequency
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Fig. 1: A two-dimensional Gaussian mixture with
three components.

cepstrum coe�ecients. The idea behind is to compen-
sate for some speci�cs of the human ear like logarith-
mic energy and frequency perception, and to be able
to separate the source of the signal from the articu-
lation con�guration (the �lter). More details on the
articulation model and the DSP part might be found
in [7, 5]. The characteristic feature vector we obtain
from each frame consists of the �rst and second deriva-
tive of the frame energy, the 16 cepstrum coe�cients
and their �rst and second derivatives � 50 parameters
in total.
We use Bayesian classi�ers for classifying the frames

based on the extracted feature vectors. The Bayesian
classi�ers are implemented as Gaussian mixtures.
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Clearly each Gaussian mixture is a n-dimensional
continuous probability distribution (see Figure 1).
The Gaussian mixture is used to de�ne the probability
for every feature vector to belong to a given class. In
our implementation we have 50 dimensions and we use
mixtures with up to 16 components.
Our phoneme models are based on continuous 3-

state left-to-right HMM (Figure 2). More formally a
continuous 3-state left-to-right �rst-order HMM is a
tuple consisting of a sequence of states 〈1, 2, 3〉, transi-
tion probabilities 〈a0,1, a1,1, a1,2, a2,2, a2,3, a3,3〉; a0,1 =
1; a1,1 + a1,2 = 1; a2,2 + a2,3 = 1; a3,3 = 1 and
emissions 〈b1, b2, b3〉, such that every emission bi is
a n-dimensional Gaussian mixture. In that case if
a sequence of T feature vectors O1, O2, . . . , OT ∈
Rn is given, then the probability this sequence to
be observed along the sequence of hidden states
s1, s2, . . . , sT ∈ {1, 2, 3} is:

P (O1, O2, . . . , OT |s1, s2, . . . , sT ) =
T∏

i=1

ai−1,ibi(Oi)

The probability the sequence O1, O2, . . . , OT ∈ IRn to
be observed by the HMM model is the sum of the
probabilities this sequence to be observed along all the
sequences of hidden states:

P (O1, O2, . . . , OT ) =∑
s1,s2,...,sT

P (O1, O2, . . . , OT |s1, s2, . . . , sT )
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Fig. 2: A continuous 3-state left-to-right �rst-order
HMM.

A ìåðàê l ëåê, ëàìïà g ãðàä
a ìàçå, êåäúð m ìàìà d äàð
e òåë, ïåðî n íàð v æàð
i áèê, ïèðîí p ïåê z çàð
O êîí÷å r ðúêà k êàíà

o áîðáà, êè÷óð s ñèí 4 ÷àð

U Òóíèñ t òèõ 6 øàõ

Y êàòúð f ôàð j êðàé, Êîëüî

b áàáà h õîë 0 ÷îðáàäæèÿ
w Âàðíà c öàð 9 ãîäçèëà

Table 1: Phonemes

The acoustic model consists of 30 continuous 3-state
left-to-right HMMs � one for each phoneme. The train-
ing of the HMMs is performed using a variant of the
Baum-Welch algorithm [10, 5].
Our phonetic system uses di�erent phonemes for the

stressed and unstressed vowels �à�, �î�, �ó� and �ú�.
The unstressed vowels �à� and �ú� are merged into one
phoneme. The same applies to the unstressed �î� and
�ó�. The palatalized consonants are considered as a
pair of the corresponding not palatalized consonant
followed by the semivowel �é�. Table 1 presents the 30
phonemes used in our system.

4 Recognition model

The Recognition model has to provide a mapping be-
tween an audio signal represented as a sequence of
feature vectors and the sequence of the pronounced
words. This mapping is ambiguous because of the am-
biguous positions of the word boundaries and the ho-
mophony phenomenon. For example there is no dif-
ference in the pronunciation of the Bulgarian phrases
Ïåòêî ðèòà and Ïåò êîðèòà. Because of that the
Recognition model has to provide an evaluation (prob-
ability) of the correspondence of the audio signal and a
sequence of words in regards to the following criteria:

1. Acoustic similarity between the signal and the
pronunciation of the words;

2. The syntactic correctness of the word sequence;

3. The semantic correctness of the word sequence in
respect to the context.

The speech recognition task is then reduced to �nding
the most probable sequence of words for a given signal
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Fig. 3: Dictionary if the wordforms Å, ÅÐÀ, ÇÀ,
ÇÀÊÎÍÀ, ÊÀÂÊÀÇ, ÍÎÂ, ÒÎÌ, ÒÎÌÎÂ repre-
sented as a deterministic �nite-state automaton.

in respect to the Recognition model.
The Recognition model is built in several steps.

First a deterministic �nite-state automaton D rec-
ognizing all the wordforms from the vocabulary is
constructed using the methods presented e.g. in [2].
On Figure 3 the minimal deterministic �nite-state au-
tomaton for 8 wordforms is shown. On the next step
the vocabulary of phonetized wordforms is built. For
this task we have used the phonetization rules for Bul-
garian developed in the framework of the SpeechLab
project [1]. The ruleset is represented as a composition
of replace rules. For example the rule for de-voicing a
sequence of consonants ending with an unvoiced con-
sonant is (refer to [6]):

(w→f)|(z→s)|(g→k).../
_ (voiced|unvoiced)*.unvoiced.(vowel|sonor)
All the phonetization rules are represented as regu-

lar relations, which are composed into one relation R
using the techniques presented in [6, 4]. The �nite-
state automaton representing the phonetized vocabu-
lary R(D) is derived by the mapping of D through
R using the following regular operations: R(D) =
range(id(D) ◦R).
In the next steps the phonemes in the network R(D)

are substituted with the corresponding acoustic mod-
els � the 3-state left-to-right HMMs discussed in the
previous section. In this way we derive a huge HMM
which models the acoustic probability a sequence of
feature vectors to be mapped against a given word.
Finally the Recognition model has to incorporate a

language model which evaluates the possible sequences
of words. The most common language model for a task
of this scope is based on bigram probability estimates,
relating the likelihood of co-occurrence for two consec-
utive words in a sequence.
The �nal recognition network is constructed from

the phonetized vocabulary HMM by creating bigram-
weighted transitions from the end of each word (the
�nal states) to the beginning of every other word (the
starting state). The bigram-weights are calculated dy-
namically as explained in section 6. The Recognition
model is illustrated on Figure 4.

5 Recognition process

As discussed above, the recognition process is reduced
to �nding the most probable sequence of states in the
Recognition model in regards to the feature vectors
derived from the audio signal. The general scheme of
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Fig. 4: The Recognition model.

the recognition process is given on Figure 5.

The computational complexity of the naive ap-
proach, which considers all possible sequences of hid-
den states would be O(MT ), where M is the number of
states in the language model HMM and T is the length
of the sequence of feature vectors. The Viterby algo-
rithm [10] might be used for reducing the complexity
to O(M2T ). In the case of LVCSR M is in the order
of millions and T is in the order of a thousand. There-
fore a full Viterby search can hardly be performed in
real time. To reduce the computations a common ap-
proach is to employ beam search. In the Viterby al-
gorithm at each step only a limited number � the best
scoring paths are regarded. I.e. the dynamic program-
ming traversal of the network is a partial breadth-�rst
traversal, where the lower scoring paths are discarded.
Only the N -best continuation �active� states are con-
sidered. In our evaluation we have experimented with
the following values for N : 1000, 1500, 2000, 2500 and
3000.
The number of word sequences, which are derived

using a full Viterby search is in the order of 1060−1070.
The beam search approach reduces the number of
word sequences for a given utterance to about 1010.
The result of the traversal is stored into a weighted
acyclic word lattice. An example of the word lattice
for the utterance �ïåòêîðèòà� is shown on Figure 6.
The weights correspond to the acoustic and word bi-
gram probabilities, summed with particular weights.
The acoustic probability is calculated from the acous-
tic models of the phonemes in the sequence and the
bigram probabilities are derived from the bigram lan-
guage model. On a second step the acoustic and bi-
gram probabilities are re-scored using other weights.
The system returns the best sequences in the word
lattice in respect to the new weights. More details of
this approach are presented in [8, 5].

Our system implements the Microsoft Speech API
version 5.1. In this way the Bulgarian speech recogni-
tion is accessible under the Microsoft Windows oper-
ating system from all applications utilizing the Speech
API like Microsoft O�ce. The memory used by the
system is below 120 MB. The speed of the processing
is under 0.9 times the real time on a modest computer
in case of 2000 active states. This means that the user
can use the system without the need to awaiting the
processing.
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6 Implementation details of the
Language model

Consider the sequence of n words v1, v2, . . . , vn. Its
probability is approximated as P (v1) ·

∏n−1
i=1 P (vi+1 |

vi). A bigram language model can be considered as a
data structure used for solving the following problem:
given a bigram (pair of words) w1w2, �nd P (w2 | w1).
We use a corpus of legal texts to evaluate a bigram

language model. The corpus consists of 200·106 words.
90% of the sentences in the corpus are used for the
computation of the bigrams, while the other 10% are
used for the calculation and minimization of the cross-
entropy. The number of the words (monograms) in

our dictionary is 442, 501. In our implementation we
use a bigram cut-o� threshold: we take into account
only the bigrams with at least two occurrences in the
corpus. The number of these bigrams is 4, 108, 409.
To smooth the monogram and bigram probabilities,
we apply the absolute discounting algorithm, [9], in
backing-o� variant.
In [3] Jan Daciuk and Gertjan van Noord present a

technique for very compact representation of language
models. However their method requires binary search
in sorted arrays. Since the time complexity is cru-
cial for a good speech recognition system, we choose
an approach that requires constant time for a bigram
probability evaluation. The constant is small and does
not depend on the number of the monograms and bi-
grams.
Every word is represented as a 32-bit integer. Its

value is the position of the word in the lexicograph-
ical order of all words. Every byte of this 32-bit in-
teger is considered as a separate symbol. Thus every
word has exactly four symbols and every bigram is
a string of eight symbols. The number of all sym-
bols is 256. We keep all such eight-symbol strings in
a perfect hash. The perfect hash is represented as
a minimal acyclic deterministic �nite state automaton
A = 〈Σ, Q, i, δ, σ, f〉 over alphabet Σ, where |Σ| = 256,
Q is the set of states, |Q| = 631, 501, δ : Q × Σ → Q
is a partial transition function, the number of the
transitions is 4, 264, 244, i is the initial state and f
is the only one �nal state. Every transition of A is
associated with a nonnegative whole number by the



Active states 1000 1500 2000 2500 3000

Juridical texts
1-LER 93.72% 95.32% 96.05% 96.16% 96.51%
1-WER 81.46% 84.85% 87.10% 87.41% 88.08%

Speed (x RT) 0.32 0.55 0.82 1.21 1.67
Memory (MB) 100.73 108.3 111.54 116.0 137.21

Common texts
1-LER 94.13% 94.83% 95.30% 95.50% 95.64%
1-WER 80.41% 82.37% 83.53% 84.07% 84.42%

Speed (x RT) 0.3 0.52 0.77 1.13 1.55
Memory (MB) 103.94 110.59 119.17 120.6 139.31

Table 2: Evaluation table.

function σ : Q × Σ → N. A has the property that
if the bigram b = b1b2 . . . b8 is accepted by A, then∑8

k=1 σ(δ∗(i, b1b2 . . . bk−1), bk) is the position of the
bigram b in the lexicographical order of all 4, 108, 409
bigrams. Here δ∗ is the extended transition function.
The function δ induces a sparse transition matrix and
we use Tarjan's table, [11], to represent this matrix.
The table has 4, 895, 828 entries. Every entry repre-
sents a transition. The size of one entry is 12 bytes: 4
bytes encode a symbol, 4 - a value of σ and 4 - a des-
tination state. We have achieved 87, 1% utilization of
the Tarjan's table leaving 12, 9% empty entries. Using
this table, given a state s and a symbol a ∈ Σ, we can
compute in constant time δ(s, a) and σ(s, a). We have
another table Pr of 4, 108, 409 four-byte �oating-point
numbers. In Pr we keep the −log probabilities of the
bigrams. Let us explain how our language model solves
the following problem: given a bigram b = b1b2 . . . b8,
�nd P (b). We start a traversal of A with b. If b is
accepted by A then P (b) = Pr[σ∗(i, b)], where σ∗ is
the extended version of σ. If the traversal fails af-
ter b4 then we use the smoothing formulae and the
monogram model to compute P (b). If the traversal
fails before b4 then P (b) = P (b5b6b7b8) and we use the
monogram model to compute it. The representation of
the monogram model is trivial: it is a table of 442, 501
four-byte �oating-point numbers - one number for ev-
ery word.
The size of the whole language model is 82, 3 MB.

The computation of a bigram probability P (w2 | w1)
requires constant time.

7 Evaluation

We performed our experiments on a notebook with
a Mobile AMD Sempron 3400+ processor and 2 GB
RAM. The acoustic model was trained by adapting a
speaker independent model with one hour of speaker's
speech data. The vocabulary consists of about 450000
wordforms.
The test set consists of 63 utterances from juridi-

cal texts and 1276 utterances from common texts.
We have evaluated the letter accuracy de�ned as
1 − letter error rate (1-LER) and the word accuracy
de�ned as 1 − word error rate (1-WER). The speed
indications are in respect to the real time. Table 2
summarizes the evaluation results.
A manual review of the recognition results revealed

some speci�c classes of mistakes. As expected the com-
plex clitics grammar in Bulgarian resulted in many
cases of wrong word boundary segmentation e.g.:

äà ëè ↔ äàëè, áè ëè ↔ áèëè, çà êîí è ↔ çàêîíè.
The full form of the de�nite article in�ection in mas-

culine nouns was another major source of recognition
errors. Since the �ò� in the full form article in�ections
�úò�, �ÿò� is often pronounced without an explosion
the system confused it often with the wordform with
the non-full form of the de�nite article e.g.:
êîíÿò ↔ êîíÿ, ìúæúò ↔ ìúæà.
The single most frequent source of errors are the

proposition �â� and �ñ�. Their unvoiced phonetizations
are the phonemes �f� and �s�, which are very easily con-
fused with any noise like speaker's aspiration especially
at the utterance start. Since those are between the
most frequent words in Bulgarian this resulted some
times in the wrong insertion of an additional propo-
sition in front of the utterance, especially in case of
more noisy environment.

8 Conclusion

This paper presented the result of the project for
building a LVCSR system for Bulgarian. Sophisti-
cated techniques were applied to cope with the very
large Bulgarian vocabulary. The evaluation results
showed less than 4% letter error rate and 13% word
error rate on speech recognition of juridical texts us-
ing real time processing speed on a modest notebook
computer. The system has been packaged as a soft-
ware product implementing the Microsoft Speech API
5.1.
An informal user feasibility test has been conducted

in a company specialized in providing law information
services. This test proved that although a user adap-
tation period is required, the system is already in a
state permitting daily use for text dictation.
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