
Efficient Matching using Overlay Transducers

Clemens Marschner∗
Fast Search & Transfer

Rablstr. 26
D-81669 Munich
clemens@fast.no

Abstract
We present algorithms and data structures for
pattern matching on large corpora that are an-
notated with linguistic features, such as part-
of-speech tags or other syntactic or seman-
tic annotations. The results suggest that the
proposed data structures, Overlay Transducers,
form an effective filter on the search space of
non-deterministic transducers as used for Lo-
cal Grammar matching, reducing the number of
comparisons per input token to roughly the num-
ber of feature names being used in the search
patterns, independent of the number of search
patterns in total.

Keywords

Overlay Transducers, Local Grammars, Finite-State Methods,

Annotation Graphs

1 Introduction

Local Grammars are a way to describe language con-
structs by means of (possibly nested) syntax diagrams
that may also contain output symbols. They have
been used for describing the grammar of French [3],
for extracting locations from German texts [7], for ex-
tracting biographical relations [2], for rule-based tag-
ging [12], and much more. For linguistic applications
they are the natural extension of regular expressions
(as used in programming languages) that can take not
only input characters, but a wide variety of linguistic
features of the input into account.

Current implementations of this formalism, like
the Unitex system[9], transform these grammars into
transducers called (Extended) Recursive Transition
Networks (RTNs)[14] and are used on preprocessed
text whose set of input symbols (the text dictionary)
is known. However, when these grammars are to be
applied to very large, web-scale corpora, or to corpora
of unknown size like streams, the input alphabet (in
the form of tokens and feature values) cannot be enu-
merated, which presents a specific challenge for match-
ing algorithms. We have developed a state-of-the-art
matcher, henceforth called “LG-Matcher”, for a web-
scale search engine. In this context, the amount of
analysis that can be done is usually tightly bounded
by the latency of a document becoming searchable and

∗Formerly at CIS Center for Information and Speech Pro-
cessing, University of Munich, Germany.

translates directly into hardware costs, so efficient al-
gorithms are paramount.

As RTNs in general are non-deterministic, the
search space can become quite large, and grows sig-
nificantly as the grammars evolve. Dealing with the
sources of non-determinism is the first challenge. The
use of output symbols and subgraphs limits the abil-
ity to determinize the transducers. On the other hand,
most of the match attempts end up being unsuccess-
ful, as most grammars cover only a small portion of
the input text.

Connected to this is a second challenge, given by the
demand for supporting larger and larger grammars.
The unlimited input alphabet means that for an input
search patterns can usually only be evaluated linearly,
one after the other. In contrast, deterministic trans-
ducers, as used for lexicon lookup, can be traversed in
time independent of their size.

Most of the match attempts occur near the initial
state of the grammars, so optimising here promises a
high return with little effort. In [6] we presented a fil-
ter method called “Prefix Overlay Transducer” (POT)
which reduced the search space of the LG-Matcher by
mapping finite sub sequences of input patterns to a
set of paths for the LG-Matcher, similar to adding
an overlay to the initial state of the grammar. By
default, the POT-Matcher would first filter input se-
quences and only activate the LG-Matcher when the
prefix of the grammar matched.

In this paper we generalize from this method by
adding the ability to attach overlay transducers not
only to the initial state, but to all states of the in-
put grammar. We have implemented a significantly
changed matching algorithm and tested it with vari-
ous parameters. The experiments show that in con-
trast to the LG-Matcher we achieve elegant scalabil-
ity and a significant speed-up compared to the prefix
overlay transducers. In practice, growing a real-life
local grammar from 1 to 43 sub graphs extends the
running time only 0.57 times, allowing for searching
several MB of richly annotated input text per second
with the power of context-free grammars.

One might be tempted to restrict the expressive-
ness of the formalism, e.g. by abandoning recursion,
or other means that transform the input grammars.
In this paper, we argue that these kinds of transfor-
mations can be avoided, while at the same time the
expressiveness of the formalism is not harmed at all.

The remainder of this document is organized as fol-
lows: We first give a brief overview of local grammars
in their representation as RTNs and describe how the

LG-Matcher works. Then we present how RTNs are
mapped to a representation from which the OTs are
built, and discuss their properties. We continue with
describing how the OT-Matching algorithm works and
how it compares to the POT-Matcher from [6]. We
close with giving experimental results on a variety of
practical grammars.

2 Local Grammars and Recur-
sive Transition Networks

Local Grammars are a formalism for representing local
syntactic or semantic rules. They are used for pattern
matching on input text which may contain linguistic
annotations.

An example of a local grammar is given in Fig. 1,
which shows how a fraction of a grammar recognizing
locatives. Fig. 3 shows the RTN that was generated
from Fig. 1.

Input Texts. To facilitate the understanding of
how Local Grammars work, we represent text as a
sequence of possibly overlapping boolean or nominal
annotations that bear syntactic or semantic features.

Definition 2.1 The input to the local grammar
matcher consists of (1) a flat sequence of textual units
(characters or tokens) and their position 0, ..., n that
specify their boundaries, and (2) a (possibly empty)
set of annotations. Every annotation is specified by
an interval [i, j], 0 ≤ i < j ≤ n and a set of key-value
pairs bearing (nominal or boolean) features.

An example for the sentence “He lives in New York”
is shown in Fig. 2. A feature would be the surface form
of a token, or its part-of-speech (POS) tag. Annota-
tions can span more than one textual unit, and they
can overlap: The “location” feature could span both
the phrase “New York” and “New York City”. Anno-
tations can be generated by linguistic modules such as
gazetteers, grammars, or taggers. The set of feature
names is usually small. E.g. for the rest of this paper
we assume that only the features “surface”, “lower-
case”, “capital”, “pos” (part-of-speech) and “seman-
tic” exist. We further assume that the result of this
processing need not be unambiguous – contradictory
annotations may still exist. We further assume that
whitespace is simply ignored – to be precise we could
think of adding transitions to all automata, matching
zero or more whitespace between annotations. The
result is equivalent to that of a directed annotation
graph, with token boundaries as nodes and annota-
tions as edges.

Fig. 2: The sentence “He lives in New York” repre-
sented as a set of feature regions.

Recursive Transition Networks. Each Local
Grammar has an equivalent recursive transition net-
work (RTN). In the specific sense of this paper they
are defined as follows:

Definition 2.2 An RTN consists of a set of (named)
graphs G with name N(g) with a specific top graph
g0.

Each graph g consists of the tuple 〈Q, Σ, Γ, q0, F, δ, 〉,
where Q is the set of states, Σ is the input alphabet, Γ
is the output alphabet, q0 ∈ Q is a special initial state,
F ⊆ Q is the set of final states, and δ ⊂ Q× {Σ ∪ ε ∪
N(G)} × {Γ ∪ ε} ×Q is the transition function.

The input symbols of RTNs consist of search pat-
terns which are composed from expressions of the kind
“feature = value” and are closed under conjunction
(&) and negation (!). As output, we only allow terms
of the form “[feature” and “]” which specify a new
annotation with a “semantic” feature to be created.
The new annotation will span from the start of where
the transition containing “[feature” has matched to
the end of where the transition containing “]” has
matched.

Disjunction (|) and concatenation (◦) can be used
in Local Grammars as well, but in RTNs they are ex-
pressed through transitions being put in parallel or in
sequence and are therefore not part of the search pat-
tern algebra. Since transducers in general cannot be
determinized, they temporarily need to be viewed as
finite-state automata: Subgraph calls are treated like
input symbols, and a single symbol is formed from an
input–output pair. Each graph of a grammar is treated
this way, and is determinized and minimized using an
algorithm like Hopcroft minimization[4].

Matching With RTNs. After determinization,
the RTN will contain different input and output sym-
bols on all transitions leaving a state, but they may
still select overlapping sets of the input, because the
alphabet of the input is unknown. Furthermore, not
all ε-transitions may have been removed, as they might
still contain different output symbols. Finally, deter-
minization takes place on the graph level only, and
subgraphs may also match overlapping sets of words
from the input. As a result, the matcher will be non-
deterministic.

The LG-Matcher will therefore perform, for each in-
put unit, a depth-first search through the transducer.
Outgoing transitions at a state are ordered. For each
transition, the search pattern is evaluated against all
annotations starting at a given position. If the evalua-
tion is successful, the parser needs to move to the end
of the annotation and to the target state of the tran-
sition. If it is not successful, it will first try to match
all further transitions at the state with all annotations
at the position in the text, and then track back to the
previous state. If it reaches a final state, it reports
the path through the input annotations in connection
with the path through the grammar. ε-transitions are
always followed, regardless of the input. Calling and
leaving a subgraph can be seen as special cases of ε-
transitions, as described in Fig. 4.

Definition 2.3 A path through the RTN is a list p
of numbers that describe which of the (ordered) tran-
sitions were followed from the initial state. During

Fig. 1: A graph of a Local Grammar in “Unitex” syntax. 〈E〉 denotes an ε-transition, 〈beach〉, 〈.DET 〉 and
〈+City〉 define conditions for lemmas, part-of-speech tags, and semantic codes, respectively. 〈PRE〉 searches
for capitalized words, the grey box forms a non-terminal calling the “geo” graph, and the terms [GEO and] are
output symbols attached to an empty (〈E〉) transition.

matching, each entry of p is related to 1 or 0 anno-
tations, depending on whether the transition is input-
consuming or not. The sequence of annotations is con-
tinuous and covers a region of the input. Together they
form the control state of the LG-matcher.

The approach contains three causes of inefficiencies:
(1) non-deterministic parts, (2) infinite alphabet and,
as a consequence, (3) a potentially large temporary
search space.

Non-determistic parts, introduced by subgraph
calls, output symbols, or ε-transitions, cause that the
same expression needs to be evaluated more than once
per input unit. Determining which transitions to
follow requires the evaluation of all search patterns,
which takes O(n) comparisons per state, where n is
the number of outgoing transitions. This may require
several hundreds or even thousands of evaluations per
input unit in a practical grammar, which is usually not
acceptable. At last, while the search space may ini-
tially be prohibitively large, it usually narrows down
significantly when paths are followed. In most cases,
no final state will be reached, as Local Grammars usu-
ally cover only a small portion of the input text. It
therefore makes sense to move costly computations
to a very late time where the search space is already
small.

3 Optimizing RTNs Using Lexi-
cal Transducers

To overcome these three problems, the central idea of
this paper is to use a lexical transducer to map a string
representation of the search patterns to a set of paths
in the RTN. These are usually used to represent large
dictionaries.

Definition 3.1 A lexical transducer is a determinis-
tic, acyclic, minimal transducer which can contain out-
put symbols only at final states and whose input sym-
bols are single characters.

Building the OT. In a pre-processing step for the
RTN we translate the search patterns that label out-
going transitions of the initial state and its successors
into a string representation. These string represen-
tations are compiled into a lexical transducer, called
overlay transducer. For matching, input units and an-
notations are also treated as strings and are first pro-
cessed by the overlay transducer. When reaching a
final state, the output of the transducer defines a set
of paths of the RTN. Starting from the end points of
these paths we continue with the usual RTN matching.

This is efficient as for a deterministic automaton, if
the alphabet is known in advance, its symbols can be
enumerated, and an array can be used for each state,
whose indices represent the symbols, and whose en-
tries signify whether a transition exists or not. This
means, for a given input character, the matching out-
going transition can be found in O(1), regardless of
the size of the automaton[5], in contrast to O(n) with
RTNs.

Since cycles or recursion cannot be represented in
lexical transducers, only the prefix of all words of the
language recognized by the RTN will be represented.
The algorithm is shown in Algorithms 1 and 2. It is
guaranteed to terminate, as three constraints may be
specified: The maximum number of states the trans-
ducer is allowed to have, the number of cycles that may
be unfolded, and the maximum “level” which specifies
the number of input-consuming transitions to be fol-
lowed from the initial state. In [6] we showed that
the “level” forms the most effective of these criteria,
and we will limit further discussion to this parameter.

Fig. 3: A Recursive Transition Network, generated from the graph in Fig. 1. Boolean features are abbreviated.
Transitions at each state are ordered (tn).

A level of 2 means that each entry of the transducer
consists of two concatenated expressions of the form
“feature1 = value1.feature2 = value2”.

The question remains how expressions can be repre-
sented as strings in a way that the transducer can be
traversed efficiently. We distinguish between the set
R of representable and N of non-representable expres-
sions. In the simplest case only transitions of the type
“feature = value” are in R and the set of features
is known and is mapped to a set of characters, while
other types of expressions like “feature 6= value” are
not1. The overlay maps string representations of finite
RTN paths, consisting of a sequence of concatenated
keys being computed from the patterns, to their nu-
merical representations. Non-representable transitions
are represented using the key “+”, which means that
the transition at the end of the path needs to be evalu-
ated “by hand”. For ε-transitions (which includes sub
graph calls and -returns) the key is empty. Patterns of
the form “feature=value” are represented by append-
ing a delimiter symbol “$”, e.g. “pos=N$”, or even
shorter using single-character feature identifiers such
as “pN$ when the set of features is known and small.

The OT is built through a breadth-first search
through the RTN, which allows for applying any of
the mentioned termination criteria. The overlay trans-
ducer is built in parallel to the traversal. First assume
that subgraphs are not present. Then, for each state s
in the RTN, we first seek the set of ε-reachable states
from s and remember the path to these states, respec-
tively. The set of non-ε-transitions leaving these states
forms a candidate set for inclusion in the OT. Candi-
dates from R are added directly to the OT. Candidates
from N or ones that are left when one of the termina-
tion conditions are reached are added the list of “re-
maining” paths at the “+” symbol in a finalization
step.

Algorithm 1 assumes that the OT can be built
breadth-first in main memory. However, by chang-
ing finalize() and addP lusTransition() to write the

1 In fact it is also possible to represent expressions containing
“&” operators as well, as long as negation is not present.

max level 1 max level 2
pA$ (0),(2,0) pA$ (2,0,-) pAsC (2,0,0)
pV$ (1) pAsb (2,0,2) pA$+ (2,0,1)

pAsc (0,0) pVsc (1,0)

Table 1: Two prefix overlay transducers for Fig. 4.
The entries map string representations of the search
patterns to paths in the RTN.

whole key of the OT into a sink (like a file) it would be
possible to use an external algorithm as well, though
then it becomes harder to use a termination criterion
like “maximum number of states” in a way that it
remains guaranteed that all- or none of the outgoing
transitions of a state are covered.

Calls to subgraphs need to be treated as if these
transitions were replaced by ε-transitions, one connect-
ing the source state to the initial state of the subgraph,
and one for each final state to the target state of the
subgraph call. In the path the transitions returning
from the subgraph are denoted with “-”. See the dot-
ted lines in Fig. 4, which replace the dashed line la-
beled “:sub”. An example of OTs for max level 1 and
2 for this the initial state of this graph is shown in
table 1.

Properties of Overlay Transducers. As can be
seen in Fig. 5, the resulting OT consists of alternating
parts, (A) and (B): a state whose outgoing transitions
enumerates the feature names, and a following sub-
trie which represents the set of possible feature values
followed by delimiter symbols.

Final states can occur in three places: leaf nodes (1),
inner nodes (2), or following “+” (3), the special sym-
bol for ”non-representable” transitions. In cases 1 and
2, the set of paths describe the states of the RTN fol-
lowing the last transition, while in case 3 they describe
the last transition. For inner nodes, the construction
algorithm guarantees that all outgoing transitions of
the states represented by these nodes are contained
in the OT. Likewise, of course, in case 1 none of the
outgoing transitions is represented.

Algorithm 1 buildOT(ot: Automaton, lg: LocalGrammar, maxStates, maxCycles, maxLevel)
1: bftQueue← {〈otState : initial(ot), lgState : initial(lg), path : ∅, level : 1〉}
2: {a possibly long FIFO breadth-first traversal queue of records}
3: while bftQueue is not empty do
4: e← dequeue(bftQueue)
5: for all c in candidates(e.otState, e.lgState, e.path, e.level) do
6: if c.lgTrans is representable in overlay transducer then
7: newOtState = insert(c.otState, convertToString(c.lgTrans))
8: if (c.lgState is final and c.stack is empty) or cyclesExceeded(c.path, maxCycles) then
9: finalize(otState, c.path) {sets state final and adds path}

10: else
11: enqueue(bftQueue, 〈newOtState, c.path, c.lgState, c.level, c.stack〉)
12: else
13: addP lusTransition(c.otState, c.path) {not representable}
14: if max states exceeded then
15: generate remaining candidates and add all as “+” transitions

Algorithm 2 candidates(otState, path, lgState, stack, level)
1: {performs ε-removal and generates candidates for one otState}
2: results← ∅
3: if lgState is final then
4: {follow transition to upper graph, if necessary}
5: if stack is not empty then
6: 〈topstack, topstate〉 ← pop(stack)
7: results← candidates(otState, path◦ “-” , topstate, topstack, level)
8: else
9: {we have reached a final state. Add the path, as a side-effect.}

10: finalize(otState, path) {may already be final}
11: for i = 0...numOutgoing(lgState) do
12: tr ← outgoing(lgState, i)
13: if tr is input consuming then
14: results← results ∪ {〈otState, path ◦ i, tr, target(tr), stack, level + 1〉}
15: else
16: if tr is subgraph call then
17: {follow “ε” transition down, but remember where we came from.}
18: subinitial← initial(tr)
19: substack ← push(stack, target(outgoing(lgState, i)))
20: results← results ∪ candidates(otState, path ◦ i, subinitial, substack, level)
21: else
22: targetState = target(tr) {skip epsilon transition}
23: results← results ∪ candidates(otState, path ◦ i, targetState, stack, level)

return results

Matching With Prefix Overlay Transducers.
First, assume that the generated transducer is used
only as an overlay to the initial state, as depicted
in Fig. 6. When reaching a final state, the POT-
Matcher would build the control state of the LG-
Matcher and then run this matcher to evaluate the rest
of the grammar. The overlay transducers are still non-
deterministic at the states that enumerate possible in-
put features, so the matching algorithm again needs
to follow all transitions where annotations, starting at
a given position, exist that contain the feature that is
represented at this transition. The feature value can
then be evaluated in time linear to its length, but in-
dependently of the number of feature values contained
in the transducer.

As a result of stepping through the overlay trans-
ducer, a set of paths is generated that describe the
state from which to procees within the LG-Matcher.
Furthermore, final states in the OT can be reached

by different annotation paths. Given the information
which RTN-transition is input-consuming or not, the
OT-Matcher can build the control state of the LG-
Matcher.

To avoid that the LG-Matcher evaluates transitions
that are already covered by the OT, it needs to be
run in one of three modes: In case (1) mentioned
above (leaf node), check for final state, then let the
LG-Matcher follow all outgoing transitions. For case
(2), just check for final state and return, as the OT
is guaranteed to include all outgoing transitions. For
case (3), the path represents a transition with a search
pattern that still needs to be evaluated. Evaluate it
and, if it matches, proceed like in case (1). When
backtracking reaches the point where the LG-Matcher
started, remove the remaining path from the stack and
return to the POT-Matcher.

“Generalized” Overlay Transducers. Using
the POT-Matcher as an overlay to the LG-Matcher

Fig. 4: Example of different phenomena encountered in RTNs during OT construction. The picture shows two
graphs, called “top” and “sub”, where top calls sub on the transition denoted “: sub”. During the construction
this transition is replaced by the dashed ε-transitions. The result can be determinized, as both initial states of top
and sub have a “pos = A” transition. sub contains a cycle of the form “sur = b *” that needs to be taken care
of. It also contains a transition with an unknown operator “§” that cannot be represented in a OT. Transitions
are assigned a number that denotes the local order at the respective state. Transitions returning from subgraphs
receive the id “-”.

achieves good results with small- to medium-sized
grammars, but it becomes less effective once the gram-
mars grow and more time is spent in the “suffix” parts.
Growing the POT to more than two or three levels is
inefficient, since it usually grows exponentially with
every level added, while its effect diminishes (except if
the coverage of the grammar is really large). There-
fore, we build overlay transducers for all states. This
works equivalently as with the initial state, with two
exceptions in connection with sub graphs: (1) When
building an OT of a sub graph, in the general case
one cannot follow a transition from a final state “up”,
because the sub graph may have been called from dif-
ferent parent graphs. (2) Some OTs may occur at final
states, i.e. the root state of the OT may be final as
well. This is different to the POT as the grammar
compiler usually avoids that the generated grammar
accepts the empty string.

If each generated key of the OT is prefixed by an
identifier of the state it belongs to, all OTs of all
states can be merged into a single transducer, and min-
imization can capture regularities in the grammar and
achieve compression.

For matching, the original algorithm was turned
“upside down” (see Fig. 7). The LG-Matcher is en-
hanced by the ability to let the OT-Matcher generate
all possible paths for each encountered state, instead of
simply iterating through its outgoing transitions. As
a result, when reaching a final state in the top graph,
the path through the local grammar will consist of
snippets generated by the OT matcher. By marking
up start and end of these snippets, the LG-Matcher is
able to clear complete sub paths during backtracking,
to avoid following paths that would be covered by the
OT.

4 Evaluation

We have conducted several experiments using an im-
plementation of the combined OT- and LG-Matchers.
In the following, we used OTs of different sizes, writ-
ten “ot x.y”, where x denotes the level at the initial
state, and y the one at all other states. A level of 0
means that no overlay is used. All experiments were
conducted on an average Intel-laptop.

The first experiment measures the overhead of com-
bining the two matchers (see Table 4), run on a 300000
token subset of the Reuters corpus (1,9 MB text, 9,58
MB with annotations). The left column shows run-
times for the LG-Matcher alone. In the right column
an OT of level 1.0 is used. Very primitive patterns
are used, one that doesn’t match anything, one that
matches all tokens, and so forth. The results indi-
cate a slight constant overhead for switching back and
forth, which gets a bit larger when more results are
reported. As can also be seen, a certain overhead is
involved with reporting a match. This is different to
using “pure” transducers that generate output for ev-
ery encountered input.

In the second experiment, a grammar recognizing
time adverbials (like “in the first days of September”
or “on May 20”) is applied to a 9.4 MB part of the
Reuters corpus (1.5 Mill. tokens, 48.8 MB with an-
notations). It consists of 65 graphs with 1277 states
and 4209 transitions and is largely lexicalized. 43 of
these graphs are called from a top graph in a large
“OR” construction. We created 7 new grammars that
include 1, 7,..., 43 of these sub graphs and combined
them with different overlay transducers (see Fig. 8).
When using OTs of depth 2 or more, the performance
is largely determined by the number of comparisons at

Fig. 5: Schema of an OT, displayed as a trie. It consists of two parts: states whose outgoing transitions
enumerate the features being looked at, and their arguments, represented through a sub-trie that can be traversed
linearly. The sub trie is left through the end symbol denoted “$”. The OT contains final states at three different
places: (1) leaf nodes, (2) inner nodes, or (3), end nodes at “+” transitions, denoting the set of paths that end
with non-representable transitions.

POT-Matcher

LG-Matcher

Fig. 6: Schema of the POT-matcher. Solid lines indicate traversal through the POT. At a final state, the path
in the local grammar is built (dotted lines) and matching continues using the LG-Matcher.

the initial state. Scaling from 7 to 31 graphs leaves the
runtimes practically constant. Graph 37 introduces a
pattern that searches a different feature at the initial
state and causes a sudden step upward, caused by the
extra comparison that most be done at each input to-
ken.

The last experiment used the same grammar, but
combined overlay transducers with a graph transfor-
mation algorithm called “Flattening” [10]. Graphs
called by the top graph were embedded into the top
graph. This was repeated a number of times, and
these “flattened” graphs were combined with overlay
transducers of different sizes. The results indicate that
overlay transducers dominate the effect of flattening.
The Flatten operation has the disadvantage that it can
blow up the grammar once the costs of embedding a
graph starts to dominate the gains of obtaining better
determinization (which usually starts at flatten level
1 or 2). Besides, the original structure (and there-

graph no OT OT, level 1.0

no match 2.312 2.756
one match 2.211 2.554
some matches 2.885 2.840
match adverbs 2.585 3.078
match all tokens 2.899 3.513
match and annotate all tokens 4.172 4.990
Det-Adj*-N 2.763 3.256

Table 2: Runtimes of the combined algorithms on a
300.000 token input using different trivial graphs and
an overlay transducer of level 1.0.

fore information) is lost – a property which it shares
with other transformations like weak Greibach normal
form [8]. With overlay transducers it is not necessary
to make these compromises.

OT-Matcher

LG-Matcher

Fig. 7: Schema of the OT-matcher. At each state, the OT returns paths that are followed in the grammar.

5 Conclusion and Future Work

In this paper we have introduced overlay transduc-
ers as the guiding data structure for matching with
non-deterministic, recursive and potentially large lo-
cal grammars, in an attempt to combine the runtime
advantages of lexical transducers with the power of
context-free grammars. The results suggest that OTs
can take over a large part of the matching process and
are an effective filter on the search space of RTNs.
Empirically the number of different features queried
near the initial state has the largest influence on the
runtime.

The method could be extended in several directions:
First, it is important to maximize the class R of rep-
resentable transitions. For complex expressions we are
thinking of introducing a third class, whose R-part is
evaluated using the OT, so that the number of times
the N -part is evaluated is minimized. One guiding
principle of this work is that it tries to move expen-
sive operations to the back. Maintaining more com-
plex feature output structures and unification [1] could
benefit from this fact.

References

[1] Blanc, O., M. Constant. Lexicalization of gram-
mars with parameterized graphs. In Proc. RANLP
2005, Borovets, Bulgaria, 117-121,

[2] Geierhos, M.: Grammatik der Menschenbezeich-
ner in biographischen Kontexten. Master’s The-
sis, Center for Information and Speech Processing,
Munich (2006)

[3] Gross, M.: Lexicon-Grammar And The Syntactic
Analysis Of French. Proc. COLING 1984: 275–282

[4] Hopcroft, J.E., R. Motwani, J.D.Ullman: Intro-
duction to Automata Theory, Languages, and
Computation. Addison-Wesley, 2001.

[5] Liang, F.M.: Word Hy-phen-a-tion by Com-put-er.
Ph.D. thesis, Stanford (1983)

[6] Marschner, C.: Efficiently Matching with Lo-
cal Grammars Using Prefix Overlay Transducers.
Proc. CIAA 2007, Prague, Czech Republic.

[7] Nagel, S.: An Ontology of German Place Names.
Corela, Numéros spéciaux, Le traitement lexi-
cographique des noms propres. (2005)

[8] Paumier, S.: Weak Greibach Normal of Recur-
sive Transition Networks. Proc. Journées Mon-
toises d’Informatique Théorique (2004)

[9] Paumier, S.: Manuel d’utilisation du logiciel Uni-
tex. (2003)

[10] Paumier, S.: De la reconnaissance de formes lin-
guistiques l’analyse syntaxique, Ph.D. thesis, Uni-
versité de Marne-la-Valle (2003)

[11] Roche, E.: Parsing with Finite-State Transduc-
ers. In: Roche, E., Schabes, Y. (eds.): Finite-State
Language Processing (1997) 241–282

[12] Roche, E., Y. Schabes: Deterministic Part-of-
Speech Tagging with Finite-State Transducers. In:
Roche, E., Schabes, Y. (eds.): ibd. 205–237

[13] Silberztein, M.: INTEX: A Corpus Processing
System. COLING (1994) 579–583

[14] Woods, W. A.: Transition network grammars
for natural language analysis. Comm. ACM 13 10
(1970) 591–606

Fig. 8: Performance comparison of different grammar and transducer sizes on 1.5 million tokens input text,
with and without the original matching algorithm. E.g. “ot2.1” is the running time using the overlay transducer
with depth 2 at the root state and depth 1 at all other states.

Fig. 9: Sizes of the Overlay Transducers of Fig. 8, in Bytes.

Fig. 10: Effects on the runtime of the time adverbial graph when embedding subgraphs in a “Flatten” operation.
At each iteration sub graphs are embedded into the top graph, and the result is determinized and minimized.
Overlay transducers achieve a larger effect than the flatten operation and in most cases do not profit from a
combination with the flatten operation.

