
Tuning the Selection of Correction Candidates for Garbled Tokens

using Error Dictionaries

Stoyan Mihov Petar Mitankin Annette Gotscharek Ulrich Reffle
Klaus U. Schulz Christoph Ringlstetter

Abstract

In previous work, we introduced a method for effi-
ciently selecting from a background dictionary suitable
correction candidates for an malformed token of a given
input text. In order to select small and meaningful
candidate sets, refinements of the Levenshtein distance
with restricted sets of substitutions, merges and splits
were used. In these experiments, the subset of possi-
ble substitutions, merges and splits was determined via
training, using ground truth data representing corrected
parts of the input text. Here we show that an appro-
priate set of possible substitutions, merges and splits
for the input text can be retrieved without any ground
truth data. In the new approach, we compute an er-
ror profile of the erroneous input text in a fully auto-
mated way, using error dictionaries. From this profile,
suitable sets of substitutions, merges and splits are de-
rived. Error profiling with error dictionaries is simple
and very fast. We obtain an adaptive form of candidate
selection which is very efficient, does not need ground
truth data and leads to small candidate sets with high
recall.

1 Introduction

When faced with an ill-formed input token, lexical
text correction systems typically compute a fine-ranked
list of correction suggestions from the dictionary. The
ranking takes word similarity, word frequencies and
other aspects into account [2]. Until today, no efficient
methods are known for computing such a ranked list in
a direct, one-step manner. Hence, actual systems are
typically based on a first step where a set of correction
candidates for the ill-formed token is selected from the
given background dictionary. At this point, in order to
guarantee maximal efficiency, a coarse similarity mea-
sure is used. In a second step, candidates are ranked,
now using a fine-grained word similarity measure and
other scores [2, 5, 12, 10].

In earlier work [8, 4], we introduced a direct method
for efficiently selecting for a given token V all entries
W of the background dictionary where the Levenshtein
distance dL (cf. [3]) between V and W does not exceed

a given bound n. The method strongly depends on the
concept of a universal Levenshtein automaton for fixed
bound n. This automaton, only computed once in an
offline step, may be used to decide for arbitrary input
words V and W if dL(V, W) ≤ n. For lexical text cor-
rection, the dictionary is represented as a finite state
automaton. The universal Levenshtein automaton is
used to control a traversal of the dictionary automaton
in a way that paths not leading to suitable correction
candidates are recognized immediately. In this way, all
correction candidates V with dL(V, W) ≤ n are found
while visiting only a small part of the dictionary au-
tomaton.

While this method is very fast, the resulting sets
of correction candidates are often much larger than
needed. More recently, we introduced a similar method
[9] which is based on a refinement of the Levenshtein
distance with restricted sets of substitutions, merges
and splits as edit operations. The new method selects
very small candidate sets which nevertheless contain
the proper correction in all cases but a few excep-
tions. The efficiency of candidate selection is further
improved. Hence, the method is well-suited both for
automated and interactive text correction. As an in-
put for the new method, restricted sets of substitutions,
merges and splits have to be specified. In [9], these sets
are obtained via training, aligning ground truth data
with the erroneous text to recognize error types.

In many practical application scenarios, ground
truth data are not available. This explains why adap-
tive techniques become more and more relevant that
automatically compute a kind of profile of the given
input text. These profiles can be used to improve the
behaviour of text correction systems in many ways.
In this paper, we show how to efficiently compute re-
stricted sets of substitutions, merges and splits without
analyzing any ground truth data. We use error dictio-
naries of a special form to compute an error profile of
the given erroneous input text. This form of error pro-
filing is simple and very efficient. From the profile of a
text, suitable restricted sets of edit operations are ob-
tained immediately. In our experiments we found that
the new method for candidate selection leads to results
directly comparable to those obtained from supervised
training.

The paper, which combines and refines methods pre-
sented in [9, 6], has the following structure. In Section 2
we briefly recall the idea of a universal Levenshtein au-
tomaton and indicate how these automata are used for
efficiently selecting correction candidates for a garbled
input word in a dictionary. In Section 3 we summa-
rize techniques presented in [9]: we introduce the new
distance measures based on restricted sets of edit op-
erations that yield refined ranking orders. We then
describe a new type of universal automaton, An and
show how to use it for refined selection of correction
candidates. Section 4 describes the construction of er-
ror dictionaries. We show how to compute an error
profile for a given input text and how to obtain re-
stricted sets of edit operations from these profiles. In
Section 5 we present our evaluation results.

In what follows, we assume that the reader is fa-
miliar with the theory of finite state automata. The
symbol dL denotes the Levenshtein distance. Strings
are built over a fixed alphabet Σ.

2 Universal Levenshtein automata and
fast approximate search in dictionar-
ies

Universal Levenshtein automata [4] can be con-
sidered as derivatives of a well-known family of non-
deterministic automata AW

n . For a given word W , AW
n

accepts all strings V where dL(V, W) ≤ n. The au-

tomaton A“chold′′

2 is shown in Figure 1. The states of
AW

n have the form bi, 0 ≤ b ≤ |W |, 0 ≤ i ≤ n. If we
traverse AW

n with the input word V starting from the
initial state 00, the state bi indicates that i edit oper-
ations have been used for the alignment of W1W2...Wb

and the prefix of V consumed to reach bi. Upward
transitions represent insertions, empty (non-empty) di-
agonal transitions represent deletions (substitutions).
The universal Levenshtein automaton of degree n, A∀

n,
represents a deterministic version of AW

n which at the
same time abstracts from the specific input word W .
For the construction of A∀

n, the following observations
are crucial:

(1) The set of states of AW
n that can be reached

from the start with an input of length k (i.e., the set
of active states for this input) is always a subset of a
“triangular sliding window” of ≤ (n + 1)2 states an-
chored in the k + 1-st state (fltr) of the bottom layer,
as indicated in Figure 1. (2) Given any set of ac-
tive states reached with input of length k−1 and a
new input symbol σk, the next set of active states
only depends on the distribution of the letter σ in
the subword wl . . . wk . . . wr of W = w1 . . . wh where
l = max{1, k − n} and r = min{k + n, h}. In what
follows, wl . . . wr is called the relevant subword of W
for the k-th input symbol.

Ignoring details that arise for triangular windows
which contain final states, the automaton A∀

n uses
just one “generic” triangular window G instead of the

sliding sequence of “positioned” triangular windows of
AW

n . Nonfinal states of A∀
n then correspond to subsets

of G.1 The input of A∀
n are sequences of bitvectors,

the k-th bitvector χk encoding the distribution of the
k-th input letter in an imaginary relevant subword. In
this way, any sequence of sets of active states reached
with input letters σ1, . . . , σk in AW

n is represented as
a sequence of states of A∀

n reached with the bitvectors
χ1, . . . , χk that encode the distribution of the letters
σ1, . . . , σk in the relevant subwords of W .

The automaton A∀
n is “universal” in the sense that

it can be applied to any pair of words V, W . One of
the words, say V , is treated as input. The distribu-
tions of the letters of V in the relevant subwords of W ,
formalized as bitvectors, then represent the input for
A∀

n. The sequence of bitvectors is accepted if and only
if dL(V, W) ≤ n. More details about the construction
of the universal Levenshtein automaton can be found
in [4].

Fast approximate search in dictionaries. Assume
now we have a dictionary D, encoded as a deterministic
finite state automaton AD. Given an input string W ,
we want to use A∀

n to find all entries V ∈ D such that
dL(V, W) ≤ n. The task is solved by a simple parallel
backtracking procedure. Beginning at the initial state
we traverse AD, visiting all prefixes P = σ1 . . . σk−1 of
dictionary words. At each forward step, the label σk of
the transition is matched against the relevant subword
of W to produce a bitvector χk which serves as input
for A∀

n. Note that in general there are distinct options
for selecting σk. If the transition in the “control” au-
tomaton A∀

n fails, we choose another possible transition
in AD with label σ′

k. If no choices are left, we go back
to the previous state and prefix P = σ1 . . . σk−2. We
output the prefix P once we reach a final state in both
automata.

Forward-backward method. It should be mentioned
that the evaluation results for approximate search in
dictionaries presented below make use of a highly effec-
tive optimization ([4]) in order to speed up the search.
Typically, automata encoding a dictionary D for a
given natural language have a characteristic structure.
The branching degree of nodes is very high in the initial
part of the automaton close to the start state (“ini-
tial wall”). A huge number of distinct states can be
reached with the first two, three transitions. Deeper
inside, when 3, 4 nodes are traversed, most nodes only
have a very small number of successors. The “forward-
backward method” ([4]) uses this observation to speed
up approximate search. Given D, two automata AD

and Arev
D are used. The former (latter) encodes all

words of D in the usual, left-to-right (reverse, right-
to-left) order. An erroneous token W given as input is
split into two parts W1, W2 of approx. the same length.
In order to find all lexical neighbours of W = W1W2

in a given edit distance, we first assume that the ma-

1 The construction of final states is similar, using another
generic window. For simplicity, we also ignore other details of
the construction.

Σ

524232221202

514131211101

00 10 20 30 40 50c h o l d

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε
Σ Σ

Σ Σ

Σ Σ

Σ Σ

Σ Σ

Σ Σ

Σ Σ

Σ Σ

Σ Σ

Σ

c h o l d

c h o l d

0

1

2

Σ

Σ

Fig. 1. Nondeterministic Levenshtein automaton A“chold′′

2 , triangular sliding windows highlighted.

jority (at least half) of all errors is found in W2. Since
in W1 the number of possible errors is reduced, not
too much backtracking is necessary when traversing
the initial wall of AD, looking for possible variants of
W1. Variants of W2 are also found quickly since in
this part of the automaton AD the branching degree
of nodes is very small. The second subsearch is dual.
We assume that most errors are concentrated on W1.
We now traverse Arev

D , using the reversed input string
W rev = W rev

2 W rev
1 . Again we quickly pass through the

initial wall of Arev
D , and possible variations of W rev

1 are
found easily. The speed-up of this method is striking,
see [4].

3 Universal Levenshtein automata for
refined Levenshtein distances

Definition 3.1 Let three sets S1,1 ⊆ Σ × Σ, M2,1 ⊆
Σ2×Σ, S1,2 ⊆ Σ×Σ2 be given. A restricted substitution
is an operation where we replace a letter σ in a word W
by another letter σ′ where 〈σ, σ′〉 ∈ S1,1. A restricted
merge is defined similarly, replacing a bigram σσ′ of
consecutive letters in W by σ′′ for 〈σσ′, σ′′〉 ∈ M2,1.
By a restricted split we mean an operation where a
letter σ of W is replaced by a bigram σ′σ′′ s.th.
〈σ, σ′σ′′〉 ∈ S1,2. Insertions and deletions are defined
as usual. Each restricted substitution, merge, split,
and each insertion and deletion is called a refined edit
operation.

Definition 3.2 Let S1,1, M2,1, and S1,2 as above. Let
V, W ∈ Σ∗. The refined Levenshtein distance between
V and W is the minimal number of non-overlapping
refined edit operations that are needed to transform V
into W .

In what follows, by dS1,1,M2,1,S1,2
we denote the re-

fined Levenshtein distance for the sets S1,1, M2,1, and
S1,2. The index is omitted if the sets are clear from the

context. It is trivial to see that the refined Levenshtein
distance between two words can be computed via dy-
namic programming, using a variant of the well-known
Wagner-Fischer scheme [11].
By dS1,1

we denote the simplified version of the re-
fined Levenshtein distance where M2,1 = S1,2 = ∅. In
what follows we illustrate the universal Levenshtein au-
tomata An for the special metrics dS1,1

, and we show
how these automata are applied. Due to space limita-
tions, the very technical computation of the automata
An cannot be described here. At the end of the sec-
tion we indicate the modifications that are necessary
to cope with the general situation where the sets M2,1

and S1,2 may be non-empty.
An only depends on the maximum number of re-

fined edit operations n that we want to tolerate, not
on the choice of S1,1. The automaton A1 for dS1,1

is
shown in Figure 2. Given two words V and W , the
set S1,1 is used to calculate the actual input i(V, W)
for the automaton An. An accepts i(V, W) only when
dS1,1

(V, W) ≤ n. We build i(V, W) using the so-called
characteristic vectors.

Definition 3.3 For each letter c ∈ Σ and each word
a1a2...ar ∈ Σ∗ we define the characteristic vectors

1. χ(c, a1a2...ar) = b1b2...br, where bj = 1 if c = aj

and bj = 0 otherwise,

2. χsub(c, a1a2...ar) = f1f2...fr, where fj = 1 if
〈aj , c〉 ∈ S1,1 and fj = 0 otherwise.

Definition 3.4 Given the two words V, W ∈ Σ∗ we
define the input i(V, W) for An as the sequence of
pairs of characteristic vectors α1α2...α|W | where αi =

〈βi, β
sub
i 〉 and

1. βi = χ(Wi, Vi−nVi−n+1...Vk), where k =
min(|V |, i + n + 1), V−n+1 = . . . = V0 = $ for
n > 0. Here $ 6∈ Σ is a new symbol.

2. βsub
i = χs(Wi, Vi−n+1Vi−n+1...Vk), where k =

min(|V |, i + n − 1), V−n+2 = . . . = V0 = $ for
n > 1.

For example, let Σ = {a, b, c, ..., z} and S1,1 =
{〈a, d〉, 〈d, a〉, 〈h, k〉, 〈h, n〉}. Let V = hahd and W =
hand. Then i(V, W) = α1α2α3α4 where

α1 = 〈β1, β
sub
1 〉 = 〈χ(h, $hah), χs(h, h)〉 = 〈0101, 0〉,

α2 = 〈β2, β
sub
2 〉 = 〈χ(a, hahd), χs(a, a)〉 = 〈0100, 0〉,

α3 = 〈β3, β
sub
3 〉 = 〈χ(n, ahd), χs(n, h)〉 = 〈000, 1〉,

α4 = 〈β4, β
sub
4 〉 = 〈χ(d, hd), χs(d, d)〉 = 〈01, 0〉.

The automaton A1 is shown in Fig. 2. In the
figure, any x represents a don’t care symbol that
can be interpreted as 0 or 1, and expressions in
round brackets are optional. For instance, from
the state {I−1#1, I#1, I+1#1} with 〈010(x), x〉 we
can reach the state {I#1}. This means that from
{I−1#1, I#1, I+1#1} we can reach {I#1} with 〈010, 0〉,
〈010, 1〉, 〈0100, 0〉, 〈0100, 1〉, 〈0101, 0〉 and 〈0101, 1〉. In
the above example we start from the initial state {I#0};
with input 〈0101, 0〉, 〈0100, 0〉, 〈000, 1〉 and 〈01, 0〉
we visit the states {I#0}, {I#0}, {I−1#1, I#1}, and
{M#1}. {M#1} is a final state. Hence dS1,1

(V, W) ≤
1.

The universal automaton A′
n for the refined Lev-

enshtein distance dS1,1,M2,1,S1,2
is similar to An. The

difference is that the input i′(V, W) is a sequence of
quadruples of bitvectors, because in addition to χ and
χsub we use two other characteristic vectors - one for
the restricted merge and one for the restricted split.
The sets M2,1 and S1,2 are used for the computation
of these two additional vectors respectively.

4 Using annotated error dictionaries

By an error dictionary ([1, 7]), we mean a collec-
tion E of strings that is generated from a set of cor-
rect words D, systematically applying error patterns
of a particular form. In an annotated error dictionary
we store with each erroneous token the corresponding
correct word and the transformation (here: edit oper-
ation) that was used to generate the entry. Since the
same erroneous token might be produced in distinct
ways the mapping from errors to correct words in gen-
eral gives rise to ambiguities.

Generating annotated error dictionaries. The
design of an error dictionary for estimating frequencies
of edit operations in an erroneous text is a delicate
matter. We first used a simple brute-force construc-
tion, based on a set of typical OCR errors. For some
test sets, satisfactory results were obtained. For others,
it turned out that some of the relevant error patterns
were new, and results were disappointing. After a series
of other tests we arrived at the following construction.
(a) To the 100,000 most frequent words of our English
dictionary we applied all substitutions, a selected list
of “typical” merges and splits, and deletion of a letter

i, l, t, or f. In addition, (b) to the 25,000 most fre-
quent words we applied all (other) merges, and (c) to
the 5,000 most frequent words we applied all (other)
splits. Entries of the error dictionary E were produced
by applying only one error transformation at one po-
sition. Hence, entries contain just one error. For each
error W ′ obtained in this way, we only stored the re-
translation that leads to the most frequent correct word
W . At this point, when garbling a word with one of
the non-typical merges and splits (cases b, c), we re-
duce its frequency by a penalty factor of 1/100. We
deleted all erroneous tokens with a length ≤ 3 since
acronyms and special names of length ≤ 3 can easily
be misinterpreted as errors. We also excluded all errors
that correspond to some word in a large collection of
standard dictionaries with an overall sum of 3.2 million
entries of various languages as well as of person and ge-
ographic names. Since each correct word that is left in
the error dictionary may lead to a misclassification, it
is important to use a collection of dictionaries with very
high coverage. The error dictionary E produced in this
way contains 38, 794, 294 entries.

Applying annotated error dictionaries. Given
the annotated error dictionary, E , it can be used as
follows to produce an “alignment list” Lal containing
triples (W, W ′, op) from an erroneous text. The strings
W ′ are the normal tokens found in the input text. A
token is called “normal” if it is composed of standard
letters only. If token W ′ represents an error found in
E , then its correction W and the applied edit opera-
tion op = (σ 7→ σ′) are specified in E - (W, W ′, op) is
added to Lal. If W ′ is not found in E but in the base
lexicon D, W ′ is considered to be a correct token: we
add (W ′, W ′, ∅) to Lal. Tokens that are found neither
in E nor in D are discarded. This lexicon constraint
balances the only partial lexical coverage of the er-
ror dictionary and also prevents erroneous tokens that
are missing in E from being misinterpreted as correct
words.
It is important to note that no groundtruth data is
involved in this procedure. Furthermore the error dic-
tionary is made for the purpose of OCR post-correction
but is in no way adjusted to a certain OCR engine or
document type.

Obtaining the set of restricted edit opera-
tions. From Lal we can easily compute estimated
frequencies for all symbol dependent substitutions,
merges and splits f(σ 7→ σ′) as well as f(σ) for all sym-
bols and 2-grams. The score for each edit operation is
its relative frequency: frel(σ 7→ σ′) = f(σ 7→ σ′)/f(σ).
By f(σ), we denote the number of occurrences of σ
in the left components W of entries (W, W ′, op) or
(W, W, ∅) of Lal. Thresholds subs, merge, and split
define the set of restricted substitutions, merges, and
splits. A substitution σ 7→ σ′ is only used as a re-
stricted substitution during the selection of answer can-
didates if the estimated relative frequency of σ 7→ σ′ is
larger than subs. merge is the corresponding threshold
for merges, split is the threshold for splits.

}{ 0#
I }1{ 0#

-M

}{ 0#
M

},1{ 1#1#
MM -

},1,2{ 1#1#1#
MMM --

},1{ 1#1#
II -

}1{ 1#
-I

}1,1{ 1#1#
+- II },2{ 1#1#

MM -

}1,,1{ 1#1#1#
+- III

}1,{ 1#1#
+II

}1{ 1#
+I

}{ 1#
I

}{ 1#
M

ñá 0x0(0(x)),

ñá 0x01,

ñá ex,
ñá xx1,

ñá ex,
ñá 1x0,ñá xx1,

ñá xx1xx, ñá xx1x,

ñá 1x0,

ñá 1x01,

ñá x011,

ñá 0x0,

ñá e1,

ñá xx1,ñá x11,ñá xx11,ñá 1x01x,

ñá 0x01x,

ñá x111,

ñá x11,
ñá 1x00(x),

ñá x100(x),

ñá x110(x),

ñá x11x(x),

ñá x1x(x)(x),

ñá x10(x)(x),

ñá x01,

ñá x01,

ñá x1x,

ñá e1,

ñá x1x(x),0

ñá x1x0(x),

ñá x101x, ñá x0x1,

ñá x0x1x,

ñá x1x1,
ñá x1x1x,

ñá x111x,
ñá x101, ñá xxx1,

ñá xx01,

ñá xx1,

ñá xxx1x,

ñá xx11x,

ñá x001x,

ñá xx01x,

ñá xx10(x),

ñá x011x,

ñá x001,

ñá x010(x), ñá xx1x(x),

ñá x,10

Fig. 2. Universal Levenshtein automaton A1 for refined Levenshtein metrics.

Implementation and efficiency aspects. The
just under 40 million entries of the error dictionary
are stored in a minimal deterministic finite-state au-
tomaton to grant a compact representation and very
fast lookup times. In an offline step, it takes about
3 minutes and 30 seconds to compute the automaton
with approx. 1.5 million states, its size in memory (in-
cluding the annotations) is 513 MB. The estimation at
runtime is basically a sequence of lookups for all nor-
mal tokens of the text and thus very fast. After loading
the automaton, 1,000 tokens of text are processed in ∼
35ms.

5 Evaluation results

As a test set for the new method we used
the TREC-5 corpus with character error rate 5%
(http://trec.nist.gov/data/t5 confusion.html) and an
English dictionary with 264,061 words. Via dynamic
programming we extracted from the corpus couples of
the type 〈pattern, original〉, where pattern is an OCRed
word and original is its corresponding original. The
problem of case errors was ignored for these tests.
From one half of the test set, we extracted the couples
〈pattern, original〉 where pattern 6= original and where
original was found in the dictionary. This subset rep-
resents all recognition errors that can possibly be cor-

rected with the applied dictionary. For each pattern
we selected a set of correction candidates from the dic-
tionary.
To have a baseline comparison, we first made exper-
iments with Levenshtein automata for the standard
Levenshtein distance (lines (a) in Table 1) and au-
tomata allowing unrestricted substitutions, merges and
splits (lines (b)). We then repeated the tests with re-
stricted edit operations. The sets of allowed operations
were determined by the thresholds 2 given in Table 1
and relative frequencies derived either from supervised
training (lines (c)) or from an error profile obtained
with error dictionaries as described above (lines (d)).
Only for (c) we used the remaining half of the test set
for supervised training.

In Table 1, n denotes the maximal number of (re-
stricted) edit operations. For n = 1, we used 100, 000
test patterns for evaluation. For n = 2, the number
of test patterns is 50, 000. For n = 3, the number
of test patterns is 23, 000. With len, we denote the
possible length for an input pattern. In practice, a
distance bound n = 1 (n = 2, n = 3) is mainly inter-
esting for words of length l ≤ 6 (7 ≤ l ≤ 12, 13 ≤ l),
which explains our focus. The number cand gives the
average number of correction candidates per pattern

2 The thresholds are standard values that proved suitable for
the corpus. Future experiments must show if the values are
stable for texts of a different kind.

subs merge split cand recall time

n = 1, len = 1 − 6
(a) standard 0 1 1 7.78 70.565% 0.032 ms
(b) unrestricted 0 0 0 45.73 94.52% 0.107 ms
(c) training 0.0006 0.0325 0.0005 5.48 94.519% 0.049 ms
(d) err.dics. 0.0005 0.01 0.0005 6.85 94.519% 0.068 ms

n = 2, len = 7 − 12
(a) standard 0 1 1 12.24 95.178% 0.37 ms
(b) unrestricted 0 0 0 96.88 99.988% 2.448 ms
(c) training 0.01 0.0002 0.0004 3.8 99.986% 0.487 ms
(d) err.dics. 0.01 0.02 0 18.73 99.966% 1.67 ms

n = 3, len > 12
(a) standard 0 1 1 4.1 99.81% 1.214 ms
(b) unrestricted 0 0 0 43.971 100% 6.623 ms
(c) training 0.04 0.03 1 4.029 100% 1.08 ms
(d) err.dics. 0.01 0.01 1 4.029 100% 1.08 ms

Table 1. Test for distance bounds n = 1, 2, 3.

found in the dictionary. The value of cand depends
on the distance bound, the length of the input pat-
tern and the thresholds for the substitutions, merges
and splits. With time, we denote the average time per
pattern needed to find and output all correction can-
didates. With recall, we denote the percentage of pat-
terns where the correct original is found in the selected
set of answer candidates.

As lines (d) show, the new metrics based on the es-
timation with error dictionaries lead to substantially
improved results: For n = 1 and also for n = 3, the
candidate sets obtained with standard Levenshtein dis-
tance were larger but lead to poorer recall. When we
allowed unrestricted substitutions, merges and splits,
the recall was basically the same, but the extraction is
much slower and the size of the candidate sets is unac-
ceptably high. For n = 2, a significantly higher recall
(99.97%, compared to 95.18% with standard Leven-
shtein distance) is obtained at the cost of larger can-
didate sets: 18.73 (as compared to 12.24) candidates
on average. Only for n = 2 the estimation with er-
ror dictionaries was clearly outperformed by supervised
training with ground truth data where the candidate
sets are much smaller (3.8 on average). This might be
due to an important edit operation that went unnoticed
by the automatic error profiling.

The CPU of the machine used for the experiments
is Pentium 4, 2.4 GHz with 1GB RAM.

6 Conclusion and future work

In this paper we showed that error dictionaries
may be used to compute profiles for erroneous input
texts that help to fine-tune the selection of correction
candidates for malformed tokens from a dictionary.
The computation of the profile for a given input text
is simple, fast, and completely automatic. Combining
this technique with a recently introduced method
for accessing dictionaries, we obtain an automated
procedure for candidate selection which is adaptive
in the sense that the specifics of the input text are
taken into account. The method leads to very small

candidate sets with high recall.

Acknowledgements. This work was supported by
AICML, iCore, DFG and VolkswagenStiftung.

References

[1] A. Arning. Fehlersuche in großen Datenmengen unter Ver-
wendung der in den Daten vorhandenen Redundanz. PhD
thesis, University of Osnabrück, 1995.

[2] K. Kukich. Techniques for automatically correcting words in
texts. ACM Computing Surveys, pages 377–439, 1992.

[3] V. I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Sov. Phys. Dokl., 1966.

[4] S. Mihov and K. U. Schulz. Fast approximate search in large
dictionaries. Computational Linguistics, 30(4):451–477, De-
cember 2004.

[5] O. Owolabi and D. McGregor. Fast approximate string match-
ing. Software Practice and Experience, 18(4):387–393, 1988.

[6] C. Ringlstetter, U. Reffle, A. Gotscharek, and K. U. Schulz.
Deriving symbol dependent edit weights for text correction -
the use of error dictionaries. In Proceedings of the ninth Inter-
national Conference on Document Analysis and Recognition
(ICDAR), page to appear, 2007.

[7] C. Ringlstetter, K. U. Schulz, and S. Mihov. Orthographic er-
rors in web pages: Towards cleaner web corpora. Computa-
tional Linguistics, 32(3):295–340, September 2006.

[8] K. U. Schulz and S. Mihov. Fast String Correction with
Levenshtein-Automata. International Journal of Document
Analysis and Recognition, 5(1):67–85, 2002.

[9] K. U. Schulz, S. Mihov, and P. Mitankin. Fast selection of small
and precise candidate sets from dictionaries for text correction
tasks. In Proceedings of the ninth International Conference
on Document Analysis and Recognition (ICDAR), page to ap-
pear, 2007.

[10] C. Strohmaier, C. Ringlstetter, K. U. Schulz, and . Mihov. A
visual and interactive tool for optimizing lexical postcorrection
of OCR results. In Proceedings of the IEEE Workshop on
Document Image Analysis and Recognition, DIAR’03, 2003.

[11] R. Wagner and M. Fisher. The string-to-string correction prob-
lem. Journal of the ACM, 21(1):168–173, 1974.

[12] J. Zobel and P. Dart. Finding approximate matches in large lex-
icons. Software Practice and Experience, 25(3):331–345, 1995.

