Rule Definition Language and a Bimachine Compiler

Ivan Peikov
wan.petkov@gmail.com

Abstract

This paper presents a new Rule Definition Lan-
guage (RDL) designed to allow fast and natu-
ral linguistic development of rule-based systems.
We also describe a bimachine compiler for RDL
which implements two novel methods: for bima-
chine construction and composition respectively.
As an example usage of the presented frame-
work we develop Porter’s stemming algorithm as
a set of context-sensitive rewrite rules and com-
pile them into a single compact bimachine.

Keywords

bimachine construction, bimachine composition, context-

sensitive rewrite rule, rule-based system, regular function

1 Introduction

The efficient implementation of rule-based systems has
traditionally been associated with finite-state tech-
niques. It all started when Kaplan and Kay’s finite-
state transducers framework [1] was first developed. Tt
suggested that a regular rewrite rule

p—P /A _p

can be efficiently encoded by a finite-state transducer
(FST). This would allow to simulate the sequential
application of several rules by running a single FST,
obtained through composition. For practical applica-
tions when linear running time is desired FSTs could
be further transformed into a deterministic device such
as subsequential transducer or a bimachine [2].

A lot of work has been done in this direction show-
ing that these or similar approaches can indeed be
applied for various common linguistics tasks such as
POS-tagging [2], speech processing [3], speech synthe-
sis [4] and others.

In practice, however, the size of a rule-based system
usually grows fast while attempting to cover all the
complexity a natural language phenomenon contains.
This presents a challenge to the rule compilers as the
compilation time required for even simple systems eas-
ily grows beyond practical bounds. Several attempts
were made to design simpler compilers which restrict
the rewrite rules in one way or another and then con-
struct directly the final deterministic device without
going through the elaborate process of first building a
large FST and then determinizing it. A notable exam-
ple was presented by Skut et al. [5] who managed to
efficiently compile together a limited class of regular
rules allowing only single letter context focuses. The
restriction context focus restriction actually implied

that no context overlapping was ever possible, which,
in essence, reduced the compilation complexity a lot.

The current work attempts to go one step further
and describe a bimachine compiler that doesn’t im-
pose any restrictions on the regular rewrite rules and
still avoids constructing the intermediate transducers.
The compiler comes with, what we hope would be, an
easy to use Rule Definition Language (RDL) that pro-
vides the full expressive power of regular rewrite rules.
Finally, we illustrate the language and compiler usage
by implementing Porter’s stemming algorithm as a set
of 21 rewrite rules, which are then compiled into a
single bimachine.

2 The Language

Instead of starting directly with RDL’s formal gram-
mar, let’s see a simple example first:

01 package examplel;

02

03 alpha [abc];

04

05 replace: (llablllllbcll) —> nn / nan+ _ llcll+;

What we see on line 1 is the package definition. Ev-
ery RDL source file is compiled into a single bimachine,
which we refer to as package. As we’ll see later on, the
compiled packages can be reused by importing them
into other packages. That is why, the package defini-
tion is mandatory and should come first in the source
file to define the package name.

The next statement in the file is an alphabet defini-
tion. The alpha keyword is followed by a set of char-
acters we’ll use in the package. There are two atomic
types in RDL — sets (enclosed by square brackets) and
strings (enclosed by double quotes). One may use any
of them in an alpha definition. Additionally, there
could be one or more alphabet definitions scattered
along the source file. It is important, however, that a
character must be defined as part of the alphabet be-
fore used. Thus, if we swap lines 3 and 5 in the above
example, the RDL compiler will complain of unknown
character being used in string.

Finally, on line 5 we see a replace rule definition.
The replace keyword identifies the compilation mod-
ule, which has to compile the rule to follow. The com-
piler can be extended with other compilation modules
which implement different bimachine compilation al-
gorithms. Each rule contains (in its beginning) the
name of the compilation module for which it was writ-
ten, so no confusion could possibly arise. We refer to
this name as rule’s type.

After the type identifier, every rule contains two
parts — rewriting part and, optionally, a context re-
striction part. If both are present they should be de-
limited by /.

The context restriction part contains left and right
regular expressions separated by underscore (_) — ex-
actly as in the classical notation. The regular expres-
sions can contain not only the standard union (1),
concatenation (.) and Kleene star (*) but also pos-
itive iteration (+), optionality (?), bounded iteration
({m,n}), intersection (&), difference (=) and negation
(1) operators.

The rewriting part may contain union, concatena-
tion, all kinds of iterations and optionality of rewrite
expressions. A rewrite expression maps regular ex-
pression to a string (or something that evaluates as a
string). The mapping is expressed through the arrow
(=>) operator. If no arrow operator is specified in a
rewriting expression the expression is treated as iden-
tity rewriting (e.g. it doesn’t change the context focus
but merely constrains it). For instance, the following
rewriting part

(llall _> llbl|) "C"{3,} . (llall _> llbll)
would rewrite two a’s with b’s if they are separated
by three or more ¢’s. The middle rewriting expression

acts as restriction and leaves the ¢’s unmodified.

For cases when several rules need to be grouped
together before passed to the respective compilation
module a rule block might be used. In the case of
replace module, a block of rules is treated as if they
need to be applied simultaneously (with some conflict
resolution strategy) and not sequentially one after the
other. Rule blocks are surrounded by curly braces as
in the following example:

replace: {

llall _> IIAII;
llbll -> IIBII;
|ICI| _> IICII .

}

RDL also supports variables and functions which we
won’t cover in detail here as they are only important
for notation simplification.

The language has two special types of statements
that were added with reusability in mind — include
and import statements. The first one merely includes
another source file and the second allows for previously
compiled packages to be reused without recompilation.
As every package and every rule is actually compiled
into a separate bimachine, there is no trouble mixing
them as needed.

3 The Compiler

The RDL compiler goes through several phases while
compiling a package source file.

Tokenization

At this stage the input file is read and split into a list
of tokens. Except for its string representation each to-
ken contains the exact position (file name, line number

and column) where it was located in the input. This
information aids for better error reporting in the fur-
ther stages. This is also the time when include’s are
expanded and alpha statements are interpreted in or-
der to build the alphabet set for the input file. Further
on, each string and set token is checked for unknown
characters, and failure is reported if any. Cyclic inclu-
sion is also detected at this stage of the compilation
process.

Syntax parsing

As usual, the list of tokens obtained during the tok-
enization stage is fed into the syntax parser. Due to
RDL’s syntax simplicity its parsing is pretty straight
forward. The parser only needs one pass through the
token list with no more than two look-aheads at a time.
This makes it possible to run the tokenizer and parser
simultaneously the latter reading what previous out-
puts and throwing it away after it is not needed any
more. The result from the parsing process is a list
of parse trees, each one representing a rule block or
import statement.

Expansion

Further on, all variables and function calls are ex-
panded. This is the time when all undefined vari-
ables and functions are reported resulting in compi-
lation failure. As a result from this stage the parse
trees from the previous stage are modified and con-
tain only strings and sets in their leaves. No variable
or function call tokens are left in the trees.

Optimization

At this phase, we attempt to merge strings and sets
when possible. For example after this stage the parse
tree for the following expression:

llall . (llbll lICIl)

will contain a single string node with value of "abc".
The same optimization is done for sets connected with
the union (|) operator.

Bimachines compilation

This is the phase when the compilation modules come
along. Each compilation module provides two routines
- for syntax tree checking and for bimachine compila-
tion. The compiler is not aware how exactly bima-
chines are compiled out of parse trees - this is taken
care of by the respective compilation module. All the
compiler has to do is find the compilation module, re-
quired by the currently compiled rule, and call its rou-
tines to first verify that the syntax tree satisfies the
module’s requirements, and then compile the syntax
tree into a bimachine. The compilation details and al-
gorithms are hidden in the modules which makes the
compiler easily extensible.

import trees are handled by the compiler - it simply
loads the requested package from the file specified by
the respective import statement.

The result from this stage is a list of bimachines all
sharing a single alphabet.

Package compilation

Finally, all bimachines constructed or imported dur-
ing the previous stage are composed into a single bi-
machine, which is written into the package output file.
We'll cover the bimachine composition algorithm sep-
arately in the next section.

4 Bimachine composition
Before we set out the bimachine composition algo-
rithm, we need several definitions.

Definition 1 (Composition) Let B’ and B" are bi-
machines, defined as follows

B = (AL Apt) L uhere Ay = (5.01.0;.8)
= (X

Bt A wnere A = G O)

< L> Rﬂ/}> , wnere L< 7QL’qL7 L>

k= (3, Q% qx, %)
We define the result from bimachine composition (or
simply composition) of B’ and B” as a bimachine B
such that for any o € ¥*, B(a) = B"(B'(«)).
Here, for simplicity, we agree that the bimachines to

compose share a single alphabet — both in their input
and output.

Definition 2 Let B = (Ar, Agr,¥) is a bimachine.
We extend transitively its output function with the fol-
lowing inductive definition

L4 ¢*(Q1,€7QQ) =€

L4 ¢*(Q170047Q2) -
7/’*(5L(1117 a’)? «, QQ)
Let B’ and B’ are bimachines as defined in Def-
inition 1. We’ll build in several steps a bimachine
B = (Ar, AR, 1), realizing their composition.
First, we construct a nondeterministic finite-state
automaton (NFA)

AN = <Ea an SJLVa AL>
where QY = Q) x Q" x Q'y, the set of starting states is

SN = {q} } x{q}} xQ'z and transition relation is Ay, C

QY x 2 x QY for which ((p1,q1,71),a, (p2,q2,72)) €
Ay iff the following hold:

¢(Q17a'? 5E(Q27&)) ©

1. 0%.(p1,a) = po
2. dp(re,a) =m
3. Y (p1,a,m9) = € X*
4. 07" (q1,8) = @2

We construct Ay, — the left automaton of the com-
position B, by determinizing AY.

Absolutely symmetrically, we build the right au-
tomaton of B, starting with

AR = (S.QX, S, Ar)
where QF = Qr x Qb x Q' , the set of starting states is
SN = {qk}x{q}} xQ’, and transition relation is Ag C
QY x X x QF, for which ((s1,t1,u1),a, (s2,t2,u2)) €
Ap iff the following hold:

[\

L0 (u2,a) = uy

.Y (ug,a,81) =p €X*

4. 87 (t1, B) = ta

By analogy with the left automaton, we construct
Ar by determinizing A% .

We define the output function v : QL XX xQpr — X*
to produce ¥(L,a, R) = w iff there exist § € ¥* and
states (p,q,r) € L, (s,t,u) € R, such that

w

1 8 (p.a) = u
2. 0x(s,a) =7
3. ¢'(p,a,s)=p

4" (q,8,t) =w

The proof of correctness is trivial and too tedious
for the scope of the current paper.

5 Bimachine construction

In this section we describe a method for bimachine
construction from a general regular rewrite rule. The
proposed construction contains three stages each one
of which building an intermediate bimachine. Those
three bimachines are finally composed into the desired
result bimachine, realizing the regular rewrite rule.
We use the leftmost-longest disambiguation strategy
which is probably the most natural and widely used
in practice. Other strategies are also implementable
within the proposed construction method (although
we won’t show how explicitly).

We assume that a 7 / XA _ p rewrite rule is given,
where A\ and p are regular expressions and 7 is a regular
relation.

5.1 Marking the contexts

In this initial stage we construct a bimachine that
would enrich its output with marker characters wher-
ever the left and right constraints (prefix and suffix) of
the rewrite rule are satisfied. For this purpose we ex-
tend the alphabet with two unused characters, < and
> and call them left and right marker respectively.

Let X be the rule alphabet (both input and output)
and w € ¥* is an input word of length n. Left marker
should be inserted at position i of w iff Wiws ... w; €
L(X*X). Symmetrically, a right marker should be in-
serted at position j of w iff Wjw;7 - w, € L(pX*).

Additionally, we would like to treat specially the
empty context and insert another <> marker sequence
at positions where both the left and right constraints
hold.

For example, if we take the rule:

replace: "a"x -> "b";

where the context constraints are empty (e.g. always
satisfied) the word aaa should be marked as

<>La><><a><><a><>

As already explained the left/right marker is in-
serted exactly before the position where the left/right
constraint happens to be true (in our case this is any-
where) and an additional pair of markers is inserted
to denote the empty context (this is done for purely
technical reasons).

This behavior is implemented by a bimachine con-
structed as follows. First we construct two deter-
ministic automata (DFA) Az = <Z,Qi,qi,Fi,6i> (fOI‘
i = 1,2) which accept exactly the languages of ¥*\
and 3*p respectively. The only requirement for these
automata is that no transition ever enters back into
initial state. That is 0;(¢,a) # ¢; for any ¢ € Q; and
aey (i=1,2).

Then for any s1 € Q1, s2 € Q2 and a € X we define
the output function v (s1, a, s2) = eyriliarsloes where

<
e = €

- > 52(81,>)€F1
"= € otherwise
<
o-{;

and symmetrically for 3, I3 and es.

sS1=¢q1 N\S1 € F1
otherwise

s1 € Fi
otherwise

5.2 Filtering out the wrong markers

The purpose of this second phase is to construct a
bimachine which will accept as input a word with left
and right markers (inserted by the previous phase) and
only leave those of them that surround the proper left-
most longest contexts. In the previously given exam-
ple, the desired bimachine should output

<aaa>

Informally speaking, the leftmost longest replace-
ment strategy requires that one traverses the input
from left to right and deletes the markers (left or right)
which appear to be in the middle of a word from the
language of < 7 >.

In order to implement this behavior, we’ll construct
a left output-driven bimachine. The output-driven bi-
machines differ from the classical ones in their running
semantics — their left (or right) automaton traverses
not the input word but the output. The advantage of
this semantics is that the output function can influ-
ence the behavior of bimachine’s left automaton. In
the current case, this means that by deleting certain
markers from the input one can trick the left automa-
ton into running as if they never existed. Having this
power we are able to ignore markers that don’t sur-
round the proper contexts (e.g. those selected by the
leftmost longest strategy).

It is shown [6] that any output-driven bimachine can
be transformed into an equivalent classical bimachine.

First, we construct a nondeterministic finite state
acceptor for the context focus 7. Then we add two new
states - s and f and make them the only initial and
accepting states respectively. Transitions are added
from s to all states that were previously initial over
the left marker and from all states that we previously
accepting to f over the right marker. Finally, loop

transitions over both markers are added for all other
states in the acceptor. The result is an automaton A
that accepts all instances of 7 surrounded by left and
right maker with possibly other markers inserted in
the middle.

The right automaton Ag of the output-driven bima-
chine is obtained by structurally reversing A, extend-
ing it to accept X* as prefix and finally determinizing
it. Similarly, we construct the left automaton A; of
the bimachine by extending A to accept any prefix
from ¥* then determinizing it.

The output function of the output-driven bimachine
is defined to delete left markers when the left and right
automata have reached states ¢; and ¢o respectively
such that ¢; Ndr(ge, <) doesn’t contain s or contains
anything other than s or f. The first condition means
that the focus of the rule is not matched even though
the left constraint is satisfied. The second reason for
marker deletion means that the marker is met in the
middle of a context focus that hasn’t yet finished, e.g.
in case of context overlapping. Symmetrically, the
right marker is deleted whenever 67,(q1, >)Ngs doesn’t
contain f or contains anything other than s or f. The
first condition again means that the context focus is
not satisfied, while the second one means that either
some overlapping context has finished within the cur-
rent one or there exist a longer context focus which
should be preferred by the leftmost longest replace-
ment strategy.

Finally, we transform the output-driven bimachine
into an equivalent standard bimachine that reads only
its input.

5.3 Finally replacing

Having marked exactly the leftmost longest context
focuses that satisfy prefix, focus and suffix constraints
of the rule it is trivial to do the actual replacement.
Ambiguity might only occur if 7 is ambiguous regular
relation. In this case disambiguation is possible on
the basis of an arbitrary transition ordering (first-come
replacement preference is a good candidate).

After constructing the bimachines from 5.1, 5.2 and
5.3 we compose them and remove the markers from
the result. This produces a bimachine realizing the
given regular rewrite rule.

It is important to note that other replacement
strategies (such as leftmost shortest, rightmost longest
and rightmost shortest) can be easily implemented
by slightly changing only the bimachine from 5.2.
The RDL compiler allows all four strategies (left-
most /rightmost longest/shortest) to be applied when
constructing bimachine for rewrite rule.

6 Going cheaper

While experimenting with the so constructed bima-
chines it became evident that they are not at all min-
imal. A certain degree of redundancy was observed
even at the lowest level of the constructions. Due
to bimachine composition’s product nature even the
smallest amount of superfluous states in the composed
bimachines multiplied in the result which tended to

produce large bimachines even for a small set of not
so complex rules.

It is true indeed that the problem of bimachine min-
imization is not yet solved. However, there are certain
techniques that can help significantly reduce at least
the obvious redundancies. We’ll discuss one of them
now.

Definition 3 (Bimachine state equivallence)

Let B = (A1, As,v) be a bimachine where A; =
<27Qi7qi7Fi75i> is a DFA and ’(/) : Ql X 2 X QQ —
is the output function. We say that s12 € Q1 are
equivalent iff the following are true:

e 01(s1,a) = 01(s2,a) for anya € &
* U(s1,a,q) =1(s2,a,q) for any a € X and q € Q2

Symmetrically, we say that s1 2 € Q2 are equivalent iff
the following are true:

o 3(s1,a) = 02(s2,a) for any a € ¥
* ¥(q,a,51) = (g, a,52) for any a € X and q € Q1

It becomes evident from the definition of when two
bimachine states are equivalent that merging equiva-
lent states doesn’t change the regular function repre-
sented by the bimachine or in other words results in
smaller yet equivalent bimachine. We use that fact in
the following iterative algorithm:

Algorithm 1 Remove equivalent states

Ensure: there are no equivalent states
1: repeat
2 merge all equivalent states in Ap,
3: merge all equivalent states in Ag
4: until no states were merged

Note that the merging to the left and to the right
might not succeed removing all equivalent states at
once because the merge operation can possibly gener-
ate new equivalences.

Although simple, this technique helped reduce the
size of the bimachine in the example to follow in the
next section approximately 40 times.

7 Example: Porter’s stemmer

Porter’s stemming algorithm [7] is a set of 62 context
rules which are applied sequentially in batches over
a list of words. Although it is neither too complex
nor too large, Porter’s stemmer is a good example of
a rule-based system implementable in RDL, because
it utilizes a lot of the extended regular expressions’
capabilities and relies heavily on sophisticated context
restrictions.

The RDL implementation of the stemming algo-
rithm consists of 21 context-sensitive rewrite rules.
Follows an example of the first step the stemmer has
to make. It combines the following rules:

SSES -> SS
IES > 1
SS -> SS
S ->

These rules have to be run simultaneously and ap-
plied at the end of words. Longer replacement should
take precedence when multiple possibilities exist. For
instance, the word pass should be left unchanged be-
cause the third rule matches a longer suffix than the
fourth.

Taking advantage of the leftmost longest replace-
ment strategy these rules can be implemented as a
single RDL rule:

replace: ("sses" -> "ss") |
(lliesll -> Illll) l
("SS" -> "SS") I
("S" —> nn) / nn _ Eow;

Here EOW is a variable set to the newline character:
EOW = "\n";

It is clear that the longest suffix will start first which
will make it leftmost of all the possibilities and the
replacement strategy will prefer it.

The whole set of 21 RDL rules was compiled into a
single bimachine with 4524 states in the left automaton
and 433 in the right. The compilation took 28 seconds
on a 3.40GHz Intel Pentium 4 CPU and needed 134MB
of memory.

8 Conclusion

We presented a bimachine compiler for RDL, based on
two new methods for constructing and composing bi-
machines. The language doesn’t impose any severe re-
strictions on the regular rewrite rules and provides the
rule developer with a rich set of finite-state tools. Even
though unlimited rewrite rules are allowed, the com-
piler doesn’t use finite-state transducers as an under-
lying framework but works directly on bimachine level.
Our hope is that this will lead to better performance
and smaller compiled bimachines. Currently, there is
no similar compiler publicly available for comparison,
but the result from our experiment with Porter’s stem-
ming algorithm implementation in RDL promises that
the RDL compiler might indeed become applicable for
small-to-middle-sized rule-based systems. Further ex-
periments will prove that right or wrong.

References

[1] Ronald M. Kaplan, Martin Kay. Regular Models of Phonologi-
cal Rule Systems. Computational Linguistics, 20(3): 331-378,
1994.

[2] Emmanuel Roche and Yves Schabes. Deterministic part-of-
speech tagging with finite-state transducers. Computational
Linguistics, 21(2): 227-253, 1995.

[3] Mehryar Mohri. Finite-State Transducers in Language and
Speech Processing. Computational Linguistics, 23(2): 269-312,
1997.

[4] Wojciech Skut, Stefan Ulrich, Kathrine Hammervold. A Flexi-
ble Rule Compiler for Speech Synthesis. Intelligent Information
Systems 2004, 257-266

[5] Wojciech Skut,
Bimachine Compiler for
¢s.CL/0407046, 2004.

Stefan Ulrich, Kathrine Hammervold. A
Ranked Tagging Rules. CoRR

[6] Ivan Peikov. Direct Construction of a Bimachine for
Context-Sensitive Rewrite Rule. hitp://www. fmi.uni-
sofia.bg/fmi/logic/theses/peikov-en.ps, 2006.

[7] Martin F. Porter. An algorithm for suffix stripping. Program,
14(3): 130-137, 1980.

9 Appendix: RDL implementa-
tion of Porter’s stemmer

As already mentioned the RDL implementation of
Porter’s stemming algorithm consists of 21 rewrite
rules. They all make use of several variables (defined
in the beginning of the RDL source file) and can be
divided into 5 groups as suggested by Porter in his
original paper [7].

Common definitions and preprocessing

package porter;

alpha
alpha
alpha
alpha
alpha

[abcdefghijklmnopgrstuvwxyz] ;
n\nu;

"\u00005000" ;

"\u00005001";

"\u00005002";

Word boundary
BOW = "\n";
EOW = "\n";

Marker definitions
= "\u00005000";
"\u00005001";
= "\u00005002";

MW= #

+=*

Letter definition
A = [abcdefghijklmnopqrstuvwxyz] ;

Consonant and vowel conditions

CVp = [aeiou]+;

CVm = [bcdfghjklmnpqrstvwxyz] .
[bcdfghjklmnpgrstvwxz] *.
[aeiouy].

[aeiou]*;
CVs = [bcdfghjklmnpqrstvwxyz] .

[bcdfghjklmnpgrstvwxz] *;

Conditions used in Porter’s rewrite rules

MGTO = BOW . (CVp | CVm) . CVmx . (CVs | CVm);
MGT1 = BOW . (CVp | CVm) . CVm+ . (CVs | CVm);
VGTO = BOW . (CVp | CVm) . CVmx . (CVs | CVm)7?;
MEQL1 = BOW . (CVp | CVm) (CVs | CVm);
0 = BOW? . A* . [bcdfghjklmnpqrstvwxyz].
[aeiouy] .
[bcdfghjklmnpqrstvz] ;

Prevent rewriting of short words
replace: ("" -> E) . EOW / BOW . A{1,2} _ "";

The final replace rule inserts marker character be-
tween words of length smaller than 3 and the end-of-
word boundary. This is done in order to prevent the
processing of these words by the rules to follow.

Step la
replace: ("sses" -> "ss") |
("ies" —-> n4qn) |
("SS" -> "SS") |
("S" -> nn) / nn _ EOW;
Step 1b
replace: (ull -> S) ("eed"l"ed"l"ing") / nn _ EUW,

EOW;

replace: (S."eed") -> "ee" / MGTO _ EOW;
replace: (S.("ed"|"ing")) -> M / VGTO _ EQOW;
replace: S -> "";
replace: (("at"->"ate") |
(|Ib1||_>|lblell) |
("iz"->"ize") |
(nbbu_>ubn) |
("CC"—>"C") |
("dd"—>"d") |
(nffn_>ufu) |
(nggn_>ugn) |
(uhhn_>uhn) |
(njjn_>ujn) |
("kk"->"k") |
("mm"->"m") |
(Ilnnll_>llnll) |
(nppu_>upn) |
(nqqn_>uqn) |
(nrrn_>urn) |
("tt"—>"t") |
("VV"‘)"V") |
("WW"—>"W") |
("XX"->"X") |
(ni_s g Y) . (M => nn) /o
replace: (S -> "e") / MEQ1 & 0 _ "";
replace: S -> """
Step 1b
replace: "y" -> "i" / VGTO _ EQOW;
Step 2
replace: ("ational" -> '"ate") |
("tional" -> "tion") |
("enci" -> 'ence") |
("anci" -> '"ance") |
("izer" -> "ize") |
("bli" -> "ble") |
(”alli" -> ngln) |
("entli" -> "ent") |
(”eli" -> gt) |
("ousli" -> "ous") |
("ization" -> "ize") |
("ation" -> T"ate") |
("ator" -> M"ate") |
("alism" -> mgln) |
("iveness" -> "ive") |
("fulness" -> "ful") |
("ousness" -> "ous") |
("aliti" -> "al") |
("iviti" -> Mive") |
("biliti" -> "ble") |
("logi" -> "log") / MGTO _
Step 3
replace: ("icate" -> "ic") |
("ative" -> nn) |
("alize" -> "al") |
("iCiti" -> "iC") |
("ical" -> "ic") |
("ful" > nn) |
("ness" -> "") / MGTO _ EOW;

_ EOw;

Step 4

replace: ("" -> 8) . ("al" |
"ance" |

"ence" |

Neyr! |

"iC" |

"able" |

"ible" |

"ant" |

"ement" |

"ment" |

"ent" |

"jon" |

"ou" |

"ism" |

"ate" |

"iti" |

"ous" |

"iye" |

)

ize" / nn _ EUW,
replace: (S . "ion") -> "" /

MGT1 & (BOW . Ax . [st]) _ EOW;
replace: (S -> "") / "" _ "ion" . EOW;
replace: (S . Ax) -> "" / MGT1 _ EOW;
replace: S -> "";

Step ba

replace: ("e" -> "") / MGT1 _ EQOW;
replace: ("e" -> "") / MEQ1 - 0 _ EOW;

Step 5b
replace: "11" -> "1" / BOW . (CVp | CVm)

CVmx .

(CVm | CVs) _ EOW;
Postprocessing

After all the work is done it remains to remove the
marker characters inserted in the beginning, which
prevented the rewriting of short words:

replace: E -> "" / "' _ EOW;

