
Unsupervised Learning of Edit Distance Weights for Retrieving
Historical Spelling Variations

Andreas W. Hauser; Klaus U. Schulz
CIS

University of Munich
andy@splashground.de

schulz@cis.uni-muenchen.de

Abstract
While todays orthography is very strict and sel-
dom changes, this has not always been true. In
historical texts spelling of words often not only
varies from todays but in some periods even
varies from use to use in a single text. Informa-
tion retrieval on historical corpora can deal with
these variations using fuzzy matching techniques
based on Levenshtein-Distance using stochastic
weights. In particular by using the noisy chan-
nel model of (3) and the simple algorithm they
give. The algorithm, they use for spell check-
ing, adapted to the problem of information re-
trieval of historical words, with queries in mod-
ern spelling, uses stochastic weights, learned
from training pairs of modern and historical
spelling. Using these weights shows an improve-
ment over standard Levenshtein-Distance in the
F-Score. The preparation of the training pairs
usually depends on manual work. To avoid this
work we devised an unsupervised algorithm for
obtaining the training pairs.

Keywords: approximate search, fuzzy matching, in-
formation retrieval, historical language, unsupervised,
algorithm, noisy channel

1 Introduction

Information retrieval on corpora or databases con-
taining historical language is difficult because of two
spelling related problems. The first is that the spelling
rules have changed over time and the second prob-
lem is that the rules were not as strict or not fol-
lowed as strictly. Therefore a word might have dif-
ferent spellings at different times and even different
spellings at one time. We will refer to these as vari-
ations in the rest of this text. These variations are
sometimes regular but more often patterns are found,
where either the underlying rules have not been iden-
tified or might not exist or are so very particular that
they cannot be generalized.

German for example has been standardized at the
beginning of the 20th century and since has been up-
dated in minor ways. Before that, from about the 17th

century on, there was a period where the written lan-
guage had consolidated, so that a standardization was
possible at all. Even earlier, from the 14th century to
the 17th century, in the Early New High German pe-
riod spelling was not standardized and even words in

the same text or sentence had no need to be written
exactly the same. See (2) for more on the history of
the German language.

Common patterns of spelling variation in Early New
High German are for example i>y, t>th, e>, d$>t$,
ˆu>ˆv, äu>eu. Where the string before > is deleted
and the string after it inserted. Deletions and inser-
tions lack the respective string. ˆ is used to mark
beginning of string and $ for the end, as in arbeiten
→ arbeyten (engl. ‘to work’). We find for example
in a single text the following frequent spelling varia-
tions for modern German Eulenspiegel, the name of the
main character, written as Ulenspiegel Ulnspiegel and
less frequently Ulenspieg Ulenspigel Ulnspeigel Uln-
spiegl Ulnspigel Ulspiegel vlnspiegel. A more elaborate
overview can be found in (8).

Similar variations can be also be found in Middle
English, English written from the 11th to the 15th cen-
tury. Her an excerpt from an electronic version of an
edition, (4), of “The Canterbury tales” from about
1400:

But nathelees, whil I have tyme and space,
Er that I ferther in this tale pace,
Me thynketh it acordaunt to resoun
To telle yow al the condicioun
Of ech of hem, so as it semed me,
And whiche they weren, and of what degree,
And eek in what array that they were inne;
And at a knyght than wol I first bigynne.

This fragment shows the general characteristics of
these old texts where most of the words are close
enough to todays but the spelling and some morphol-
ogy is changed. As hinted by this example not all of
the spelling is randomly changed. Some patterns are
easy to see like y for i as in knyght and bigynne. But
hard rules for all of the variations do not seem so easy
to produce.

We found that less than 35% of the historical tokens
equal the modern translation to the character, but es-
timate that around 80% differ only in spelling for the
Munich Corpus. (6) give an overview of the variation
rates by year encountered in historical German from
about 1480 to 1880 with rates ranging from about 5%
to about 50%.

Information retrieval on such texts, without han-
dling the variations, results in poor recall because

1

of the high ratio of these variations. Approximate
search techniques can help to improve the recall. Using
stochastic weights for the edit distance costs provides
better results than standard Levenshtein-Distance but
they depend on the availability of training data, which
often is not available. We show a simple learning al-
gorithm that avoids the need for training data using
only a lexicon and a corpus, showing better results
then simple Levenshtein-Distance and worse than the
one with training data.

The rest of this paper is structured in the following
way. In Section 2 we introduce the stochastic sub-
string to substring model we use for fuzzy matching
and present a simple learning algorithm in Section 3,
first based on trainings data, then a new one without
the need for training data. Next we show our results
for an Information Retrieval task with Early New High
German in Section 4. After giving an overview of the
applications in Section 5 that could benefit from these
techniques, we draw a conclusion.

2 Advanced Fuzzy Matching

The roots of fuzzy matching are based on edit dis-
tances with equal weights for equal operations, which
are limited to character to character operations, e.g.
(5). Since all weights are equal problems arise when
search terms are matched against lexicon and the lex-
icon is big or when the relevant terms in the lexicon
are more than one edit operation away because of the
number of false positives found this way.

In cases like historical variations where two or more
edit operations are very common but certain edit op-
erations are much more likely to happen, like an inser-
tion of an h after a t or a y instead of an i, individuell
weights can help to improve the retrieval quality.

Stochastic models, as in (1), which add distinct
weights for each operation and characters involved
based on their frequency in the training data, can be
used. Algorithms, based on their work, use prepared
pairs from words that are considered close. They learn
that certain character transitions (edit operations) are
cheaper, based on the frequencies these transitions
have in the pairs. This makes it possible to model
that ein and eyn are closer than ein and ekn by hav-
ing lower weights for i → y than i → k transitions.

But while this improves, e.g. the F-Score, it is still
insensitive to the context of the character transitions,
thus giving equal weight to an i → y transitions any
where in the strings. But it might make a big differ-
ence what is around the character, e.g. ei → ay might
be close, especially it being a German diphthong, but
hi → ty might be not. (3) introduced a noisy channel
model that uses generic substring-to-substring transi-
tions instead of character-to-character transitions, en-
abling us to catch exactly that.

With that model one can get the following transi-
tions from the training pairs (kein, kayn) when one
allows the substrings in the transitions to be three to
three at maximum:

k → k, e → a, i → y, n → n
ke → ke, ei → ay, in → yn,
kei → kay, ein → ayn

They also make their weights depend on the position
in the string (start, end, none of both). For our results
we modelled the start of the strings by prepending ˆ
and the end by appending $, loosing one character in
our n-grams but simplifying the algorithm. Leading
to the additional transitions for the above example:

ˆ → ˆ, ˆk → ˆk, ˆke → ˆka,
in$ → yn$, n$ → n$, $ → $
To account for this the ordinary Levenshtein match-

ing algorithm must be modified to account for the
weighted substring to substring edit operations. A
straight forward way based on the matrix based Leven-
shtein implementations might use a lookup table, e.g.
a hash map, for the weights. To support the substring
to substring operations it needs to lookup the weights
for all combinations of transitions possible at each cell
in the matrix.

3 A simple unsupervised algo-
rithm for learning edit dis-
tance weights

Supervised Algorithm (3) give a simple super-
vised learning algorithm, that works on pairs of words
which are close. They use an ordinary Levenshtein-
Distance to convert one word to the other recording
the conversions, where conversions consist of a from
part and a to part, where the from part is converted to
the to part. That can be achieved by using a second
matrix which records the sum of the conversions in-
stead of the sum of the costs. Other techniques would
be using Objects or Structs in the first matrix to record
both and/or noting only the conversion to reach the
current coordinate and a pointer to originating co-
ordinate. Then the conversions and their combina-
tions with surrounding conversions are counted. The
weights are then computed by relating the count of the
conversion to all other conversions with the same from
part.

Map frequencies = ()
Map trainingPairs = (("ein", "eyn"),

("zwei", "zwey"),
("läuft", "leuft"),

...)

For each (word1, word2) in trainingPairs
List conversions
conversions = converter(word1, word2)
recordConversions(conversions)
computeWeights()

recordConversions(conversions):
For i to conversions.size
For j to maxSubstringLength
For k to i + j
from += conversion[k].from
to += conversion[k].to

frequencies(from,to) += 1
frequencies(from) += 1

computeWeights:
Map weights = ()

For each (from,to) in frequencies
weights(from,to) = - Math.log(

frequencies(from,to) /
frequencies(from)))

Starting with a list of training pairs, modern spelling
and historical spelling, a Levenshtein-Distance based
converter function is used to transform each of the
query words, the first element in the training pair,
to the variation, the second element, recording the
needed conversions. At this point the conversions are
only character-to-character transformations. To ob-
tain substring-to-substring transformations, combina-
tions of the single character ones of up to the maxi-
mum length of the substrings, which was chosen, and
the frequencies recorded.

Unsupervised Algorithm: The unsupervised al-
gorithm tries to obtain the training pairs automati-
cally, given a historical corpus and a modern lexicon,
with an approximate search in the lexicon, instead of
using prepared ones. It continuing very much like the
supervised algorithm.

Map frequencies = {}
Map trainingPairs = ()
List lexicon = ("ein", "eins", "zwei",

"läuft", "laufen", ...)
List corpus = ("eyn", "zwey", "leuft")
n = 1
maxCost = 1

For each word1 in corpus
Map temp = ()
For each word2 in lexicon
distance = converter1(word1, word2)
if distance < maxCost
temp.add((word1, word2))

If temp.size =< n
For (word1, word2) in temp
List conversions
conversions = converter2(word2, word1)
recordConversions(conversion)

computeWeights() # see supervised

First each word from the (historical) set or corpus
is looked up in the lexicon. If more than zero matches
within Levenshtein-Distance maxCost are found, but
not more then n, these are used in reversed order as
training pair. Using only those candidates that match
only one word in the lexicon, guards against using
pairs of unrelated words for learning that are within
distance one.

We have chosen one in our experiments for maxCost
and n.

4 Information Retrieval Experi-
ment

In the information retrieval experiment a search en-
gine for historical word forms from the Early New High
German period is modeled. Modern German is used as

query terms. Fuzzy matching is used to improve pre-
cision and recall because of the variations in spelling,
we find in historical texts.

The groundtruth data for the evaluation and the
training data for the supervised algorithm was ob-
tained from the Munich Corpus1 of Early New High
German’s database. The Munich Corpus is a collection
of texts from the Early New High German period from
the 14th to the 17th century. It includes a database
containing, besides others, the following fields for each
token: historical token, modern translation, historical
lexeme, modern lexeme.

We compare the unsupervised algorithm for fuzzy
matchingwith the supervised version, both described
in Section 3, and the ordinary Levenshtein-Distance as
described in (9).

4.1 Using the Supervised Algorithm

The Munich Corpus for Early New High German
comes with a database containing modern German
words mapped to corresponding Early New High Ger-
man words. This includes mappings to words that are
not in use anymore or have changed their meaning.
Therefore it does not contain mappings between dif-
ferent spelling only and when using the mappings to
obtain the weights for our distance function in the way
described in Section 3. These will degrade the qual-
ity of the weights a little when using the mappings
to learn the weights, unless the learning is constraint
to mappings that stay in a certain edit distance. In
the evaluation of the approximate search it will lead
to a subset of the relevant words that are practically
not found if a certain precision is to be retained. One
probably would need to use a special thesaurus before
using approximate search for these cases.

Because of the high variations in the historical lan-
guage one modern spelling is usually mapped to more
than one historical spelling. We therefore test the
quality of our retrieval by using each modern spelling
as query, ranking all the retrieved historical forms by
their edit distance. Then we compute for each distance
the precision and recall in respect to the groundtruth
in the Munich Corpus’ database.

4.2 Using the Unsupervised Algorithm

As described in Section 3 it is also possible to learn
weights completely automatic. The unsupervised al-
gorithm does not depend on training data but does
depend on the availability of a, in this case modern
German, lexicon.

The weights are learned by looking up the historical
words, that are to be retrieved, in the lexicon. If only a
single match is found, the pair is then used as training
data.

We tested the following lexica for obtaining the
weights automatically:

1 The Munich Corpus of Early New High German is still un-
published but a demo of the database application is available
at http://demo.fruehneuhochdeutsch.is.guad.de/. It will be
published later this year by the Institut für Deutsche Philolo-
gie at the Ludwig-Maximilians University of Munich. We will
refer to it as Munich Corpus.

http://demo.fruehneuhochdeutsch.is.guad.de/

Perfect Lexica The sets of modern entries are used
as perfect lexica as they contain all the necessary
query terms and not more. It contains the about 5000
New High German entries from the Munich Corpus’
database.

Deutsches Wörterbuch (DWB) Keywords The
Deutsches Wörterbuch, (7), is a diachronic dictionary
for New High German, which was started in 1838 and
finished in 1960. While it tries to cover all of the New
High German language, its focus is from the 15th to
the 20th century. It is a standard resource for German
linguists and even though it includes archaic words
out of use today, a linguist might very well use these
words in a query, especially after having looked them
up in the DWB. We used the about 300.000 keywords
as lexicon for our experiments.

Standard System Lexicon (german+ngerman)
A combined lexicon was obtained from the “german”
and “ngerman” standard word lists on our Linux sys-
tem, which are available online2. Like the DWB key-
words lexicon it also contains about 300.000 words,
but only modern words in use today.

For one experiment we used the fields modern lex-
eme and historical lexeme from the Munich Corpus’s
database, for the other the fields modern lexeme and
historical token. For both the set of of modern lexemes
are used as query terms, the corresponding historical
entries in the database were considered relevant for the
query, all others irrelevant.

The improvements with substring to substring
weights learned by the supervised and the unsu-
pervised algorithm over the ordinary Levenshtein-
Distance with standard weights of one can be seen in
the figure on Page 5. Below it is a table showing the
maximum in F-Score reached with each method and
lexicon.

5 Applications

The application of advanced fuzzy matching in the his-
torical language context is various.

Information Retrieval More and more older books
are digitized, the older the more spelling variations
are to be found, while most queries will be in todays
spelling.

OCR / Typing post-processing Digitizing older
books, the post-processing step needs to be able to
handle the spelling variations of the original text, dis-
tinguishing between spelling variation and recognition
error or typo.

Linguistic research Finding and describing the
spelling changes is an ongoing linguistic research topic.
While the improvements in information retrieval gives
researchers better support in their daily work, the
weights found can statistically support theories about
the variations too.
2 http://www.coding-zone.com/words-1.0.tar.gz

Automatic normalization The variations could
be automatically normalized to or tagged with todays
spelling such that contemporary readers can comfort-
ably read the old texts or to enrich it with this infor-
mation.

Morphology While morphology extraction of cur-
rent language seems possible, with historical language
the variations make the current techniques less usable.
Using fuzzy matching techniques combined with these
techniques make them usable again.

6 Conclusion

Information retrieval on written historical languages,
like Early New High German or Middle English, is
difficult, because spelling of words differs from todays.
Variations in spelling of historical words, caused by
less strict orthographical rules, makes it even more
difficult. Fuzzy matching can be used to handle these
variations.

We showed that the advanced fuzzy matching tech-
niques, using weighted substring to substring edit op-
erations, invented for spell checking, are much bet-
ter suited in dealing with historical spelling variations
than simpler techniques without weights, as our in-
formation retrieval experiment on the database of the
Munich Corpus showed.

The simple unsupervised learning algorithm for ob-
taining the weights, we introduced, that can be used in
the absence of training pairs raised the F-Score from
0.569 to 0.662 for the retrieval on historical lexemes
and from 0.420 0.484 on historical tokens only using
a modern lexicon. Using a perfect lexicon contain-
ing only the modern spellings from the training pairs
achieved an F-Score of 0.674 for the lexemes and 0.511
for the tokens. The best results though were obtained
with weights derived from training pairs, which gave
an F-Score of 0.710.

A part of the relevant words could not be re-
trieved with fuzzy matching without giving up preci-
sion. These should probably be handled with a special
thesaurus, as many of them are completely different
words, not just spelling variations.

References
[1] L. R. Bahl and F. Jelinek. Decoding for channels with inser-

tions, deletions and substitutions with applications to speech
recognition. IEEE Transformations on Information Theory,
21(4):404–411, 1975.

[2] W. Besch, A. Betten, O. Reichmann, and S. Sonderegger, edi-
tors. Sprachgeschichte. 4 Volumes. Walter De Gruyter, second
edition, 1998-2004.

[3] E. Brill and R. C. Moore. An improved error model for noisy
channel spelling correction. In ACL ’00: Proceedings of the
38th Annual Meeting on Association for Computational Lin-
guistics, pages 286–293, Morristown, NJ, USA, 2000. Associa-
tion for Computational Linguistics.

[4] G. Chaucer. The works of Geoffrey Chaucer. Houghton Mifflin,
2nd edition, 1958.

[5] F. Damerau. A technique for computer detection and correction
of spelling errors. Commun. ACM, 7(3):171–176, 1964.

[6] A. Ernst-Gerlach and T. Pilz. Search methods for documents in
non-standard spelling. Talk at the Workshop on Historical Text
Mining, Lancaster, U.K., July 2006.

http://www.coding-zone.com/words-1.0.tar.gz

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Precision vs. Recall with increasing distance for retrieving historical lexemes

no weights
weights with DWB keywords lexicon
weights with perfect lexicon
weights with training mappings

Fig. 1: Improvements in information retrieval on the Munich Corpus’s database, using weights from different
sources for substring to substring edit operations to retrieve historical lexemes with modern lexemes as queries.
From left to right fuzzy matching using standard Levenshtein weights, weights obtained with training mappings,
weights obtained unsupervised using DWB keyword lexicon, weights obtained unsupervised with perfect lexicon.

Table 1: Information Retrieval F-Scores
max. F-Score for retrieval of

method / lexicon for weights hist. lexemes hist. tokens
non fuzzy string matching 0.337 0.201
standard Levenshtein-Distance 0.569 0.420
DWB keywords lexicon 0.648 0.479
german+ngerman lexicon 0.662 0.484
perfect lexicon 0.674 0.511
training pairs 0.712 0.603

Query Terms from modern lexemes, relevant are the respective historical lexemes in one case and historical tokens in the
other. Weights are computed from pairs of words from the lexicon and historical forms.

[7] J. Grimm and W. Grimm. Deutsches Wörterbuch. Elektronis-
che Ausgabe der Erstbearbeitung. Zweitausendeins, 2004.

[8] A. Hauser, M. Heller, E. Leiss, K. U. Schulz, and C. Wanzeck.
Information access to historical documents from the early new
high german period. In Proceedings of IJCAI-07 Workshop on
Analytics for Noisy Unstructured Text Data (AND-07), pages
pp. 147 – 154, 2007.

[9] V. I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Sov. Phys. Dokl., 1966.

	Introduction
	Advanced Fuzzy Matching
	A simple unsupervised algorithm for learning edit distance weights
	Information Retrieval Experiment
	Using the Supervised Algorithm
	Using the Unsupervised Algorithm

	Applications
	Conclusion

