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ABSTRACT
This paper presents experiments in risk factors analysis based on
clinical texts and related Linked Open Data. Enhancements with ad-
ditional data sources can enrich patient data and allow for a deeper
investigation of correlations. In order to explore the potential of
this approach several experiments were run on data collections,
extracted from a large, nationwide repository of outpatient records.
Subclouds from the multilingual Geonames, Life Sciences Linked
Open Data and DBpedia are used as additional sources. Sophisti-
cated data mining in knowledge graphs finds frequent patterns of
linked data items from the in–house clinical repository and the
publicly available sources. The results show that Linked Open Data
infuse some relations that are not found by standard text mining
techniques of clinical narratives, and thus enable the discovery of
associations hinting to further risk factors.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • Ap-
plied computing→ Health informatics.
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1 MOTIVATION
Biomedicine is known as a data-intensive domain using multiple
types of data in heterogeneous formats and from different sources,
such as Electronic Health Records (EHR), clinical images and re-
ports, genome data and others. Advanced semantic technologies
are employed for the organization of available data in well-defined
structures with the aim to facilitate storing, integrating and sharing
data and knowledge. Linked Data (LD) as well as Linked Open Data
(LOD)1 provide a standardized means to define the association and
characterization of any kind of data in the form of links reinforc-
ing our tools to represent and manage knowledge. However, the
systematic usage of LD and LOD requires a strong commitment be-
cause creating linked data resources with sound and comprehensive
description of their meaning is a complex and subjective process.
According to the best practices, publishers should refer to terms
from widely-used vocabularies in order to ease the interpretation of
their data [18]. On the other hand, recent reviews report that in life
sciences most vocabulary terms (66.67%) are not dereferencable [2],
which hinters the linkage of data items. Despite all complications
the number of linked datasets is growing and huge Biomedical
Sciences Research Infrastructures emerge. The appearance of large
LOD resources further accelerates the development because the re-
searchers see clearly the benefits of enhancing biomedical datasets
with publicly available information.

This paper considers how integrated LOD resources help to
overcome the language barrier and better explicate risk factors. It is
well known that only small part of the risk factors (approx. 10%) is
described in clinical narratives – mainly clinical factors. But more
significant risk factors are the genetic ones (approx. 30%) and the
exogenous factors (approx. 60%). Unfortunately information about
the latter two is rarely discussed in clinical texts. Here we show
how linking names of geographic locations from patient records to
names of geographic locations in Geonames LOD adds new features
describing the environment where patients live. The patient records
1https://lod-cloud.net/
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in this experiment come from a Repository of outpatient records
submitted to the Bulgarian National Health Insurance Fund in 2016
by all General Practitioner and Specialists from the Ambulatory
Care in Bulgaria. In this study we deal with some disorders related
to the respiratory system.

The paper is structured as follows. Section 2 summarizes some
related work about knowledge graphs and application of LOD as a
novel tool for improving biomedical analytics. Section 3 presents
the materials we use and Section 4 describes the methods. The ex-
periments and results are discussed in Section 5. Section 6 contains
the conclusion and plans for future work.

2 RELATEDWORK
Knowledge graphs (KG) were introduced by Google in 2012 as a
less formal representation of interlinked data which significantly
enhances the search queries [20]. As in typical semantic networks,
the KG nodes represent labeled concepts and the edges represent
semantic relations between nodes. KGs encode world knowledge
and can help to automatically identify the entities and relations
in a natural language (NL) text. Existing KGs are the largest open
conceptual resource that provides support for semantic text inter-
pretation. Some researchers propose to use KGs as a representation
model of medical information. For instance, [19] suggests to auto-
matically retrieve entities from Electronic Health Records (EHRs)
texts to knowledge graphs. The authors introduce a contextual in-
ference pruning algorithm to explore complex semantics between
entities in a chain inference. The results have relatively low ac-
curacy due to the lack of standard Chinese medical terminology.
Recently KGs were deployed as a technology that improves patient
care and revolutionizes prediction and prevention [1]. More than
180 different life science and health care taxonomies and ontologies
are interlinked at the core of the Knowledge Graph. Various raw
data about patients are integrated in the platform as well. The claim
is that KGs provide a much more efficient way to find patterns and
use them for improving patient outcomes, in some cases prediction
of failures with more than 70% accuracy, 2 days in advance.

Linked Open Data are Linked Data released under an open li-
cense, which does not impede its reuse for free, such as DBpedia,
Wikidata and others. The topic is relatively new so many papers
discuss the available resources with focus on LOD and the process
of their development. The Life Sciences Linked Open Data (LSLOD)
cloud was created in 2004 using the terminology of the Unified
Medical Language System (UMLS) [3]. LSLOD currently contains
1,234 datasets with 16,136 links. Recently this Cloud provides ba-
sic knowledge for a variety of research experiments. In 2011 the
Health Care and Life Science Interest Group of W3C2 supported the
development of a data infrastructure for pharmaceutical research,
called Linked Open Drug Data, which enables links and easy search
across open data sources in order to identify novel and meaningful
correlations and mechanisms. Twelve open-access datasets rele-
vant to pharmaceutical research were made available as Linked
Data [17]. In general Biomedical Linked Data has now more than
10 billion links 3 connecting entities in diverse topics, including
medicine, drug, symptom, gene, and others (although the limited

2https://www.w3.org/2011/09/HCLSIGCharter
3http://linkedlifedata.com/sources.html

amount of links is viewed as a weakness together with the difficulty
to implement federated queries).

As shown above, extensive drug-related resources were recently
transformed to LD. Due to this reason many research experiments
deal with drugs. The paper [15] presents a proof-of-concept sys-
tem that transforms patient data stored in Mayo’s clinic enterprise
warehouse to RDF and provides federated querying to this data
integrated with Drug-Drug Interaction information from Drug-
Bank. The results demonstrate the benefits of interlinking and
querying multiple, heterogeneous public Web sources with private,
institution-specific patient information. The authors of [11] study
how negative food-induced interactions with drugs vary from one
part of the world to another. Two datasets (drug data and recipes
data) are transformed and connected as LD. The results show that
North American and most European cuisines have negative interac-
tions with drugs from the category "Antiinfectives for systemic use"
while the cuisines from Southern Europe, Asia, Latin America and
Africa negatively interact mostly with drugs from the categories
"Blood and blood forming organs" and "Various". A graph analytics
method, inspired by the Apriori algorithm for association mining,
is presented in [12]. It identifies frequent substructures in the narra-
tives in the Adverse drug reactions (ADR) reporting system of the
US Federal Drug Agency. In order to provide explanations about
the discovered drug–ADR associations in a systematic manner,
the authors integrate data from four different sources including
LSLOD and evaluate the proposed approach against existing phar-
macovigilance methods for three different validation sets. Some of
the discovered substructures are known while other findings need
to be further validated by a domain expert. The authors claim that
the pattern-based querying can bring together pharmacological
knowledge existing in isolated, heterogeneous sources (e.g. spon-
taneous reporting systems) and provide mechanistic explanations
behind the detected drug-drug interactions and related ADRs.

Interesting technological considerations demonstrate how to
employ LOD in biomedical domain. The paper [9] uses linked data
from the BioPortal system to create a navigation structure within
the patterns obtained from sequential pattern mining, thus sup-
porting the exploration of trajectories of diagnoses and treatments
according to different medical classifications. Another proposal
is that clinical data in hospital and medical centers can be made
interoperable by using standardized health terminologies, biomed-
ical ontologies, and growing networks of Linked Open Data [14].
The authors transformed a de–identified version of the Stanford’s
STRIDE database into a semantic LD clinical data warehouse con-
taining visits, labs, diagnoses, prescriptions, and annotated clinical
notes and demonstrate its utility. The paper [13] presents a fact
repository for causal chains of diseases, based on a disease ontology
and abnormality ontology, which is developed as linked data (1,554
diseases and 7,080 abnormal states). A navigation system called
Disease Compass provides browsing the causal chains as well as
general linked data such as DBpedia and 3D anatomical images.
Thus the disease definition answers questions such as what abnor-
mal state causes a disease or how might the disease advance, and
what symptoms may appear.

Finally we note that all initiatives related to the development of
biomedical linked data are based on English biomedical terminology.
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Figure 1: ICD-10 hierarchy of some diseases of respiratory system (J30 and J40-J45) generated by BioPortal visualization tool

Special efforts are required to involve these resources in research
tasks handling terminology in languages other than English.

3 MATERIALS
In this studywe use a Repository of about 262million pseudonymized
outpatient records (ORs) submitted to the Bulgarian National Health
Insurance Fund (NHIF) in the period 2010–2016 for more than 7
million Bulgarian citizens in total, about 5 million citizens yearly.
The NHIF collects for reimbursement purpose all ORs produced
by General Practitioners and Specialists from Ambulatory Care for
every patient visit.

This Repository was provided to the University Specialized Hos-
pital for Active Treatment of Endocrinology – Medical University
Sofia, as a primary dataset for automatic generation of the Bul-
garian National Diabetes Register [4]. In the primary archive, ORs
are stored as semi-structured files with predefined XML-format.
Information needed for health care management is structured: visit
date and time; pseudonymized personal data and visit-related infor-
mation, demographic data (age, gender, and demographic region),
locations etc. All diagnoses are given by ICD–104 codes and lo-
cation names are specified according to a standard nomenclature.
Here we consider only ORs for visits in 2016 (in total the ORs of
5,187,207 citizens). The selected subset of patients with disorders of
the respiratory system contains 427,160 patients. Relevant branches
of the ICD–10 classification are shown in Figure 1.

Two LOD resources are used to enrich the information avail-
able in the Repository of ORs. The first one is the multilingual
Geonames5 with rich information about geo locations, which is
important for prediction and exploration of risk factors triggered

4http://apps.who.int/classifications/icd10/browse/2016/en#/
5https://www.geonames.org/

by environmental characteristics. In our case the location names in
the ORs are given in Bulgarian language, so via Geonames we can
relate the location to its English description and access all attributes
available there. Another LOD resource is Bioportal6 which contains
many ontologies related to the human body and health. One of
them is integrated in our experiment – the classification of diseases
- ICD10CM7. ICD is also multilingual, so the primary Bulgarian
codes in the input ORs are easily transferable to the English ver-
sion. Practically the LOD resources help linking patient records
in Bulgarian language to English biomedical terminology. Further
public sources are Wikipedia and DBPedia.

4 METHODS
The proposed method follows an established pipeline for knowl-
edge discovery in data bases (KDD) [16] shown in Figure 2. The
pipeline starts with data selection, then data preprocessing and
transformation into RDF triples, linkage to LOD and continues
with data mining of the enriched EHRs, and finally risk alerts are
triggered on the basis of patterns interpretation.

The implementation is based on the integration of several tools
and algorithms. A free version of GraphDB8 is used as a framework
for the first three steps. GraphDB provides a tool called Ontorefine
for internal and external datasets integration and reconciliations
into semantic knowledge graph. The algorithm FP-Growth for fre-
quent patterns mining [7] is applied at the data mining step. The
final interpretation and selection of the risk factors is made by
applying semi-automated process for hypothesis generation.

6http://sparql.bioontology.org/
7http://bioportal.bioontology.org/ontologies/ICD10CM
8https://www.ontotext.com/products/graphdb/
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Figure 2: Risk Factors Identification Pipeline

Figure 3: Geonames data about the Bulgarian city Pleven

Data Selection – in the initial setup diagnoses of interest are
chosen for further deep analyses. This is necessary in order to speed
up the risk factors search because ICD-10 encodes more than 14,000
diagnoses. After that the ORs of all patients, suffering from the
specified diseases, are extracted from the Repository as structured
records in comma separated format (CSV), which is the intermediate
format for data exchange between different modules of the system.

For this study only some attributes of interest are extracted from the
ORs (Fig. 4): RZOK (ID of the regional NHIF branch), ZDRRAJON
(code for the location of the doctor’s practice), GENDER (1–male,
2–female), AGE (age of the patient), RZOK_N (the name of the
regional NHIF branch), ZDRRAJON_N (the name of the location -
city, town or village of the doctor’s practice), ID_PATIENT (unique
patient ID generated by the pseudonymization algorithm), DIAG (a
3–sign ICD–10 code of the disease). Names of locations are given
in Bulgarian language with Cyrillic alphabet. Nevertheless this is
not a problem, because the Geonames LOD supports multilingual
literals for names. For example, there are 39 alternate names in
different languages for the city of Pleven in Bulgaria (Fig. 3).

Preprocessing – the main goal of this step is to resolve the prob-
lems after mapping ontologies over the ORs. The process includes
data cleaning and reconciliation. Fig. 5 illustrates automatic rec-
onciliation of RZOK_N matched to the multilingual WikiData9
about municipalities in Bulgaria. About 75% of the data items are
matched successfully using the best match score. There are about
190 rows without data for RZOK_N and the remaining values that
require manual resolution are only about Sofia city, Sofia Province,
Kardzhali and Veliko Tarnovo, that were resolved adding four ad-
ditional rules. The automatic match of ZDRAJON_N over Wiki-
Data cities resolves about 80% of the cases. The main problems are
caused by multiple cities with the same name in different Bulgarian
provinces, which requires some manual disambiguation (Fig. 6).

9https://www.wikidata.org/wiki/Wikidata:Main_Page
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Figure 4: Ontorefine - CSV file load

Figure 5: Ontorefine - RZOK_N reconciliation

Another problem is due to the different granularity of the ZDRA-
JON_N values – some of them are cities, other are towns, villages or
even smaller municipalities. The values of DIAG are matched to the
ICD-10-CM classification in WikiData. Again this step is performed
using the Ontorefine tool.

KnowledgeGraph transformation – a free version of GraphDB
is used for the KG creation and semantic processing, locally hosted
and managed for our experiments. In this way sensitive patient ORs
are kept on a local machine and extended by additional information

Figure 6: Ontorefine - ZDRAJON_N reconciliation

available in the cloud without sharing or exporting in-house data.
Initially data is imported in CSV format and then is transformed
into RDF (Fig. 7). RDF triples (subject-predicate-object) are created
for regions (RZOK), locations (ZDRAJON) and diseases (DIAG),
based on the W3C RDF standard10.

Linking datasets – The RDF triples generated at the previous
step are bounded with the Geonames and ICD–10–CM ontology
and inserted into knowledge graph. This task is performed using
SPARQL11 query language for RDF.

Data Mining – at this step the search is expanded to all links
directly or indirectly related to the KG nodes. For instance, not
only the city names are searched in Geonames, but also nearby
places – whether there are mountains, rivers, hot springs, hills,
10https://www.w3.org/RDF/
11https://www.w3.org/TR/rdf-sparql-query/
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Figure 7: Ontorefine - RDF triples in format <subject,predicate,object> generated automatically by SPARQL query

etc. The most frequent shared links are used as a similarity mea-
sure between two nodes in the graph. The upper terminology for
natural places is provided by DBPedia’s classification. Ontologies
and background knowledge added by Linked Open Data allow to
enrich information in ORs and to search for some exogenous risk
factors. Frequent Patterns mining – finally, generalization is applied
for different frequent patterns of similarities between nodes in the
KG. The main idea of ranking is based on the trajectories of diseases
in the population graph proposed in [10]. A predefined threshold
is selected for minimal frequency (minimal support - minsup). Ini-
tially the frequency is counted for triples linked to a patient in the
database. Our system filters only those edges/links in the graph
that are incident with at least a minsup number of pairs of the KG.

Interpretation – in this step we try to identify some hidden pat-
terns in the data. Usually this task is performed by human experts
only. Additional resources like ontologies and background knowl-
edge from LOD allows semi-automatically to interpret identified
patterns.

Risk Factors Set Delivery – final decision about risk factors is
made. In addition a human expert is included in the analyses and
interpretation of the automatically extracted frequent patterns and
generated hypothesis for risk factors.

5 EXPERIMENTS AND RESULTS
Table 1 lists the diseases of interest selected for this study. The
ICD-10 hierarchy of Chronic lower respiratory diseases (J40-J45)
is shown on Fig. 1. Risk factors for respiratory diseases are closely
related to the geolocations and specific climate. Nine experiments
are run, one per each disease dataset separately.

For all experiments minsup=3 is used as a threshold value. This
value was selected taking into account the prevalence of the se-
lected set of diseases and the distribution of patients in different
geolocations in our ORs repository. The frequent patterns found in
the graph consist of locations and common relations between them
with frequency above minsup (shown in the rightmost column of
Table 1). Although all items in the rightmost column are frequent,
the results for C33 are considered as insignificant for further in-
vestigation due to the lower number of patients in the training
dataset with high dispersion in the country. For all other sets there
are sufficient evidences which present the strong relation between
locations.

Example 1: It was found that in six regions of Bulgaria - Mon-
tana, Vratza, Gabrovo, Kyustendil, Pleven and Silistra, there is a
higher prevalence of the C34 diagnose than the average for the
Bulgarian population. These six geographic areas have similar fea-
tures: location in North Bulgaria, with humid subtropical climate
and close to streams in the region. All these locations are also on
relatively similar altitude.

Example 2: For J44 it was found that its prevalence is higher
than the average in the following regions: Vratza, Vidin, Shumen,
Haskovo, Sliven and Gabrovo. These locations share common links
to relatively higher number of mountains and hills in the respective
areas. Moreover, all the cities are in the foot of some mountain or
higher hills, which prevents free circulation of fresh air and thus
might imply higher pollution.
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Table 1: Experimental datasets used in the study

ICD–10 code Patients RDF triples generated Frequent Patterns
C33 Malignant neoplasm of trachea 53 278 3 locations / 4 relations
C34 Malignant neoplasm of bronchus and lung 9251 11203 6 locations / 15 relations
J31 Chronic rhinitis, nasopharyngitis and pharyngitis 47938 50951 2 locations / 4 relations
J40 Bronchitis, not specified as acute or chronic 38562 41450 2 locations / 5 relations
J41 Simple and mucopurulent chronic bronchitis 17504 20076 3 locations /5 relations
J42 Unspecified chronic bronchitis 23744 26529 2 locations /4 relations
J43 Emphysema 3030 4608 3 locations / 4 relations
J44 Other chronic obstructive pulmonary disease 167296 169007 6 locations /9 relations
J45 Asthma 119782 122305 6 locations /8 relations

6 CONCLUSION AND FUTUREWORK
Data linking is an investment in a cumulative store of knowledge
[6]. As this task is time-consuming and uneasy, specific recommen-
dations are provided for researchers, who plan to undertake a data
linkage project in the health domain [5]. Obviously development
of big linked data is difficult for languages other than English due
to lack of critical mass of investments (via research or industrial
project). But in this paper we show how available LOD resources
in English can be employed for mining attributes in a multilingual
context, and this is a promising scenario for automatic analysis
of patient records in small languages. The results suggest that the
method has a potential for identification of complex relations be-
tween diseases and geolocations thus allowing to augment the
structured information from the ORs with external data that are
not explicitly available in the clinical narratives.

In eHealth the human-in-the-loop solution is crucial for final
decision making and fine tuning of the automatic process [8]. In
the present experiment the final decision about the importance
and feasibility of the extracted potential risk factors was made by
human experts.

Our plans for future work include integration of other ontologies
from the Bioportal like the human phenotype ontology 12. Then we
can mine more complex correlations using available temporal data
in the ORs concerning the frequency of patient visit to doctors.
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