
Similarity Search in Knowledge Graphs:
Adapting the Vector Space Model

Atanas Kiryakov1 and Svetla Boytcheva1,2

1 Ontotext, Sirma AI, Sofia, Bulgaria
{atanas.kiryakov,svetla.boytcheva}@ontotext.com

2 Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences, Bulgaria

svetla.boytcheva@gmail.com

Abstract. Exploring diverse knowledge graphs with SPARQL queries
requires a laborious process of determining the appropriate predicates,
classes and graph patterns. Another drawback is that such structured
queries represent Boolean search without relevance ranking, which is im-
practical for flexible querying of big volumes of data. We present an
experiment of adaptation of the Vector Space Model (VSM) document
retrieval technique for knowledge graphs. As a first demonstration we
implemented SPARQL queries, which retrieve similar cities in FactForge
- a graph of more than 2 billion statements, combining DBPedia, GeoN-
ames and other data. The basic methods from this paper are augmented
with graph analytics and embedding techniques and formally evaluated
in [2]

Keywords: Knowledge Graphs · Similarity · Graph Embedding .

1 Motivation

In a big data era, characterized by 5V3 (volume, velocity, variety, veracity, and
value) knowledge management is a quite challenging task and requires the de-
sign and development of new smart and efficient solutions. One prominent new
paradigm are the so-called Knowledge Graphs (KG), which put data in context
via linking and semantic metadata and this way provide a framework for data
integration, unification, analytics and sharing. Given a critical mass of domain
knowledge and good level of connectivity, KGs can serve as context that helps
computers comprehend and manipulate data.

Data in KG is accessed via structured query languages such as SPARQL4.
Defining SPARQL queries involves determining the right classes, predicates,
graph patterns and filters. This is not a problem for graphs which represent
uniform information for single application. However the most interesting applica-
tions of KGs involve putting together data from multiple proprietary databases,

3 https://www.bbva.com/en/five-vs-big-data/
4 http://www.w3.org/TR/sparql11-overview/

encyclopedic knowledge (e.g. Wikipedia) and domain specific data and mod-
els (e.g. Geonames or SNOMED). Such graphs typically contain billions of facts,
about millions of concepts and entities from thousands of classes, connected with
thousands of different relationship types. Crafting useful SPARQL queries for
such graphs can be a very laborious process. Another drawback of SPARQL, as
s mechanism to access such graphs, is that structured queries represent Boolean
search without relevance ranking, which is impractical for big volumes of diverse
data. Often there are thousands of results that match the formal criteria, but
what is really needed are the top 10 of those, ranked by relevance or importance
(whatever the criteria).

There is a need for more advanced information retrieval models, resembling
the web-scale full-text search techniques, which allow obtaining relevant infor-
mation without the need of massive efforts of highly qualified librarian. Such
techniques can help not only data exploration, but they can also be used for
data management tasks such as reconciliation (linking and fussing information
about one and the same object across different sources) and data cleaning (e.g.
detecting duplicates).

For all those functionalities we need to be able to compare entities in the KG
and to do judgment about their proximity. There are several proximity metrics,
but we are looking for one that is human like and matches human expectations.
Thus, allow even for experts that have some awareness about the domain, but
are not a top-level analyst who specialized deeply in the domain for years, to
derive predictable results without defining a strict criteria.

Such proximity measure should not be dominated by the ”popularity” of the
entities, for instance, 9 of the top-10 most popular companies in the sector to be
considered most similar to the 10th one. They should not be dominated by a sin-
gle characteristic of the entity, e.g. revenue. There is not a necessity of any direct
relations to exist between the entities, e.g. to judge Google similar to Alphabet
because those are related with subsidiary relationship. We can already retrieve
related objects using without using advanced information retrieval techniques.
Objective: To find similarity measure for nodes in a KG.

Hypothesis: Similar nodes share features and have similar ranks.

2 Knowledge Graphs and RDF

The knowledge graph represents a collection of interlinked descriptions of entities
– real-world objects and events or abstract concepts (e.g., documents) – where:

– Descriptions have formal semantics that allow both people and computers
to process them in an efficient and unambiguous manner;

– Entity descriptions contribute to one another, forming a network, where
each entity represents part of the description of the entities, related to it,
and provides context for their interpretation.

Knowledge graphs, represented using the Semantic Web standards RDF(S)
and OWL, provide the best framework for data integration, unification, linking
and reuse, because they combine: expressivity, efficiency and interoperability.

Resource Description Format (RDF, [4]) is the basic data-model for the Se-
mantic Web. It allows resources to be described through relationships to other
resources and literals. The resources are defined through unified resource iden-
tifiers (URI, e.g. URL). As in XML, literals are any concrete data values e.g.
strings, dates, numbers, etc. The main modelling block in RDF is the statement
– a triple < subject, predicate, object >, where:

– subject is the resource, which is being described;
– predicate is a resource, which determines the type of the relationship;
– object is a resource or a literal, which represents the “value” of the attribute.

A set of RDF triples represents a graph, where resources and literals are
nodes and each statement is represented by an edge directed from the subject to
the object and labeled with the predicate. So-called blank nodes can also appear
in the graph, representing unique anonymous resources, used as auxiliary nodes.
A sample graph, which describes a web page, created by a person called Adam,
can be seen in Figure 1.

Fig. 1. RDF Graph Describing Adam and His Home Page

3 Proximity metrics

The problem of proximity measure between two objects is important in many
tasks for knowledge management. The term proximity is used to refer, either
to similarity or dissimilarity. Usually, the values are in the range [0,∞], but
more often for simplicity are scaled in the range [0,1].

The term distance (metric) is used mainly to measure dissimilarity between
two data objects.

Definition: A function d : X ×X −→ R+ ∪ {0} is called metric on a set
X iff it satisfies the following conditions:

1. d(x, y) ≥ 0, ∀x, y ∈ X
2. d(x, y) = 0⇔ x = y
3. d(x, y) = d(y, x)
4. d(x, z) ≥ d(x, y) + d(y, z)

Similarity is the degree of likeness of two objects using specified metrics for
the domain. For similarity the value of s(x, y) = 1, iff x = y. Where the value 1
refers to the logical value true (yes, the values are same), and 0 means false (no,
the values are different). And for dissimilarity the values are just the opposite:
d(x, y) = 0, iff x = y. Where value 0 means that both object match (are identical
with distance 0), and value 1 means that there is significant difference between
both values.

The most famous distance metric for continuous values is the Minkowski
family Lp defined as:

Lp(x, y) = d(x, y) = (

n∑
k=1

|xk − yk|p)
1
p (1)

Frequently are used some specifications of Lp norm for p = 1 – Manhattan
distance (or City block), for p = 2 – Euclidean distance and for p =∞ – Cheby-
shev (supremum) distance also known as uniform norm:

L∞(x, y) = Lmax(x,y)d(x, y) = lim
p→∞

(

n∑
k=1

|xk − yk|p)
1
p = |xk − yk| (2)

The most common relation between similarity and dissimilarity measures is:

s(x, y) = 1− d(x, y) (3)

The proximity measure techniques depend on the attributes (features) val-
ues nature, whether they are numerical, binary, or categorical. In addition, for
numerical values need to be considered whether they are discrete or continuous
well-ordered sets in some range, interval-scaled or ratio-scaled. Also, numerical
values can be single or multiple. For instance, for geographic locations, we can
have an attribute with values for latitude-longitude. On the other hand, categor-
ical attributes can be nominal or ordinal. Some examples of proximity measures
are shown in the table below (Table 1).

Typically, similarity measures have the following properties:

1. s(x, y) = 1 iff x = y (0 ≤ s ≤ 1)
2. s(x, y) = s(y, x) ∀x, y (symmetry)

For non-symmetric similarity measures is used confusion matrix. In this case are
used some corrections:

Attribute
type

Example Dissimilarity Similarity

Continuous,
Interval-
scaled or
Ratio-scaled

Age, Weight d = |x− y|
s = −d

s =
1

1 + d

s = e−d

s = 1− (d− dmin)

(dmax − dmin)

Nominal /
Binary

Gender:
male/female

d =

{
0 if x = y,

1 if x 6= y.

(4)

s =

{
1 if x = y,

0 if x 6= y.

(5)

Ordinal /
Categorical

Education – primary
school, secondary
school, high-school,
undergraduate, grad-
uate,. . . . (Please,
note that there is
some ordering)
Operating system:
Linux, Unix, Win-
dows, . . .

d =
|x− y|
n− 1

Where n is the num-
ber of values and val-
ues are mapped to in-
tegers in the range
[0, n− 1]

s = 1− d

Table 1. Proximity metrics for different attribute types

s(x, y) 6= s(y, x)

s′(x, y) = s′(y, x) =
s(x, y) + s(y, x)

2

Similarity measures between objects that contain only binary attributes are
called similarity coefficients. Let x and y be two objects that consist of n binary
attributes. Then x and y can be represented by binary vectors: x = (x1, x2, · · · , xn)
and y = (y1, y2, · · · , yn). The confusion matrix (Table 2) for x and y is defined
as follows:

The most general definition of proximity measure is:

d(x, y) =
δf00 + f11

δf00 + λ(f01 + f10) + f11
(6)

x

0 1

y
0 f00 =

∑n
k=1 xkyk f10 =

∑n
k=1 xkyk

1 f01 =
∑n

k=1 xkyk f11 =
∑n

k=1 xkyk
Table 2. Confusion matrix

4 The Data

Most of the experiments in this paper are performed on FactForge5 - a knowledge
graph of Linked Open Data (LOD) and news articles about people, organizations
and locations. It includes:

– DBpedia6 (the English version) - an RDF-ized version of Wikipedia ,

– GeoNames7 - exhaustive geographic information about populated places,
countries and other features on Earth,

– The Financial Industry Business Ontology (FIBO),

– News metadata from NOW8 - a Semantic News Portal loaded with more
than 1 million international news articles in English, continuously collected
since year 2015.

The entire graph contains more than 2 billion explicit statements loaded
in Ontotext GraphDB – a semantic graph database engine, formerly known as
OWLIM, [1]. GraphDB performs forward-chaining reasoning to infer another 300
million statements. Thus more than 2.5 billion facts are indexed in FactForge
and available for public querying and exploration.

FactForge contains about 500 thousand owl:sameAs mappings, most of them
from GeoNames to DBPedia. For instance, <dbr:Sofia,owl:sameAs, geodata:727011/>
states that these identifiers are equivalent, i.e. that they refer to one and the same
real world entity. Effectively owl:sameAs binds nodes from different datasets, so,
that their identifiers can be used interchangeably and all the statements made
using one of the identifiers should also be valid with the other one. For instance,
GeoNames states that <geodata:727011/,gn:parentCountry,geodata:732800/>,
which is that Sofia is part of Bulgaria. Applying owl:sameAs reasoning GraphDB
infers that <dbr:Sofia,gn:parentCountry,dbr:Bulgaria>. This reasoning brings
great advantages when multiple datasets are combined, but as a side effect it can
massively expand the results for queries, expanding each single results with all
possible variations of the different owl:sameAs-equivalent identifiers. To avoid
this expansion, one should add FROM onto:disable-sameAs to the SPARQL
queries.

5 http://factforge.net
6 http://wiki.dbpedia.org/
7 http://www.geonames.org/
8 http://now.ontotext.com

Similarity Coefficient δ λ Definition

Simple matching
coefficient (SMC)
(Coordination Level
Matching)

1 1

SMC =
number of matching attribute values

number of attributes

SMC(x, y) =
f00 + f11

f00 + f01 + f10 + f11

For sets X and Y: SMC(X,Y) = |X ∩ Y |
Sørensen–Dice Coef-
ficient

0 0.5

DSC(x, y) =
2f11

f01 + f10 + 2f11

For sets X and Y:

DSC(X,Y) = 2
|X ∩ Y |
|X|+ |Y |

Jaccard’s Coefficient 0 1

J =
number of matching presences

number of attributes not involved in 00matches

J(x, y) =
f11

f01 + f10 + f11

For sets X and Y:

J(X,Y) =
|X ∩ Y |
|X ∪ Y |

Cosine Coefficient - -
cos(x, y) =

x · y
‖x‖ · ‖y‖

cos(x, y) =

∑n
k=1 xkyk∑n

k=1 x
2
k +

∑n
k=1 y

2
k

cos(x, y) =
f11√

f01 + f11
√
f10 + f11

For sets X and Y:

cos(X,Y) =
|X ∩ Y |√
|X|

√
|Y |

Overlap Coeffi-
cient (Szymkiewicz–
Simpson coefficient)

- -

overlap(X,Y) =
f11

min(f01, f10)

For sets X and Y:
overlap(X,Y) = |X∩Y |

min(|X|,|Y |)
Table 3. Some of the most popular similarity coefficients [7]

5 Models

In RDF knowledge graphs the resources (concepts, entities, documents, etc.)
are represented as nodes. Each outgoing edge contributes to the description of
the resource. In other words the features, which describe the nodes, are these
outgoing edges — each of them being defined by a <predicate,object> pair or
shortly PO-pair. Naturally comes the assumption that similar nodes have similar
features, i.e. common PO-pairs.

The next example (Figure 2) presents two companies, which share two PO-
pairs — they are both <located in,San Francisco> and operate in <industry,Aerospace>.

Fig. 2. Shared And Differentiating Edges

5.1 Vector Space Model

Traditionally similarity search is applied in information retrieval [3], and index-
ing [6] is applied for documents. The classical vector space model (VSM) was
proposed by Salton et al. Lets D = {d1, d2, · · · , dk} is a collection of documents
that contain n different terms in total T = {t1, t2, · · · , tn}. There are assigned
weights to terms by considering two types of information – local and global. The
local information is based on the individual documents, and the global infor-
mation is based on the entire collection of documents, under consideration. In
the VSM 9 1011, documents are viewed as bag of words and are represented as
n-dimensional vectors of the terms weights that they consist.

di = 〈wi1, wi2, · · · , win〉 (7)

9 http://www.minerazzi.com/tutorials/term-vector-1.pdf
10 http://www.minerazzi.com/tutorials/term-vector-2.pdf
11 http://www.minerazzi.com/tutorials/term-vector-3.pdf

Where wij denotes the weight of the jth term in the document di. In the
binary vector space, the weight just denotes the presence of a term in the docu-
ment:

wij =

{
1, if j-th term occurs in the document di

0, otherwise
(8)

In the more sophisticated VSP the weight is defined as:

wij = LijGj (9)

where Lij is the local information about the jth term in the document di; Gj

is the global information about the jth term. The local information about the
jth term is measured as its frequency in the in the document di, denoted by fij .
The local term weight is also called term frequency (TF). It needs a correction
by global term weight, because some of the most frequent terms make the VSM
vulnerable also known as spamming. Hence, a correction for the specificity is
needed that is known as inverse documents frequency (IDF), i.e. discriminatory
power of a term. This presentation is known as Salton’s classical TF-IDF VSM.
Let m is the number of the documents that contain the jth term, Pj is the
probability that a document from the collection D will contain the jth term.

P (j) =
m

|D|
(10)

Gj = IDFj = − log(P (j)) = − log(
m

|D|
) (11)

wij = −fij log(P (j)) = fij · IDFj = TF · IDF (12)

However, in practice rare terms are not frequently queried. Thus, TF-IDF is
useful for initial filtering of the document collection, but have some disadvan-
tages, because it favorites rare terms. Although some improvement of TF-IDF
were made by introducing keyword density values (KDV) (i.e. the term frequency
divided by the length of the document), in general none of them is measuring
the semantic weight of the terms to the documents. The idea of using KDV as
term weight was abandoned12 . Measuring the importance and relevance of a
term to a document is still challenging task.

In the vector space the most common metric for similarity between docu-
ments is cosine metric – measuring the cosine of the angle between two docu-
ments vectors. An example for 3D space is presented on Figure 3.

The similarity metric between two documents da = 〈wa1, wa2, · · · , wan〉 and
db = 〈wb1, wb2, · · · , wbn〉 is defined as follows:

s(da, db) = cos(θ) =
da · db

‖da‖ · ‖db‖
(13)

Where

‖da‖ =
√
w2

a1 + w2
a2 + · · ·+ w2

an (14)

12 http://www.e-marketing-news.co.uk/Mar05/garcia.html

Fig. 3. Two documents in 3D vector space and the angle between their vectors

da · db = wa1wb1 + wa2wb2 + · · ·wanwbn (15)

Thus cos(θ) = 1 iff both documents are exactly the same, and cos(θ) = 0 for
totally different documents.

There are two approaches for vector similarity searching:

– Threshold – to retrieve all documents that are similar to a given document
d ∈ D, with similarity above a given threshold, e.g. for th = 0.5 to find

S = {di | di ∈ D and s(d, di) > th}

– Ranking – to find the top N most similar documents to a given document
d ∈ D, ranked in order of similarity.

Web search engines and contemporary full-text search engines are using the
second approach for page/document retrieval.

5.2 Adapting the Vector Space Model for Knowledge Graphs

To adapt VSM for searching for similar nodes in a KG, we will consider nodes
as documents and the outgoing edges (PO-pairs) – as terms. Node nodei will
be represented by the following vector of the weighted PO-pairs in the graph,
where n is the total number of all distinct PO-pairs in the graph.

nodei = 〈poi1, poi2, · · · , poin〉 (16)

The main concern is that there could be too many different PO-pairs in the
KG. For instance, for FactForge it would be a vector space with more than 1
million dimensions. Thus, for reduction of the dimensions some restrictions for
the search space are needed.

6 Experiments on node similarity crafted in SPARQL

We present a series of experiments of implementing the node similarity in Fact-
Forge based on the above VSM adaptation using SPARQL queries. The queries
and the results are presented in Appendix 1.

The experimental setup contains the following sub-tasks:

– SH1 and SH2: Shared PO-pairs identification and filtering by predicate
– SH3 and SH4: Similar nodes by count of shared edges

These experiments are extended in [2] to include weighing of PO-pairs by
”popularity”, graph analytics (namely PageRank) and news co-occurrence.

6.1 Identify shared edges for a node

The experiments starts with task for finding PO-pairs that given node shares
with others. The SPARQL query SH1 extracts all PO-pairs for ?node=Sofia for
which exists some ?different node, for which the same PO-pair appears as
outgoing edge.

PREFIX dbr: <http://dbpedia.org/resource/>

SELECT DISTINCT ?p ?o {

BIND(dbr:Sofia AS ?node)

?node ?p ?o .

FILTER EXISTS {

?different_node ?p ?o .

FILTER(?node != ?different_node) }

}

The result contains 887 shared PO-pairs. Analysis of the results (Figure 4)
show that the majority of the predicates of the shared pairs are wikiPageWikiLink
modelling references between Wikipedia articles in DBPedia, alternateName

from GeoNames, wikiPageWikiLinkText, sameSettingsAs, wikiPageUsesTemplate,
etc.

According to the Information Theory highly expected events bear little in-
formation. Similar to the stop-words in document retrieval, some more frequent
PO-pairs are excluded, because they are too general to have significant im-
pact on the similarity measure. Thus, in this experiment we filter out PO-pairs
with five of the predicates: dbo:wikiPageWikiLinkText, dul:sameSettingAs,

dbp:wikiPageUsesTemplate, rdf:type, owl:sameAs. The updated SPARQL
query is presented on Figure 5 in Appendix 1. The result contains 800 PO-pairs,
i.e. 87 PO-pairs were filtered out.

6.2 Nodes similarity as count of shared edges

Coordination level matching (CLM) assumption for KG: Two nodes
are more similar if they share more PO-pairs.

Fig. 4. Distribution of PO-pairs by Predicates

Fig. 5. Query SH2: Shared edges, filtered by predicate

We retrieve the top-100 nodes, most similar to a given one, based on the count
of the shared PO-pairs. This way we resemble the Simple matching (coordination
level matching, CLM) [5], which assumes that documents whose index records
have n different terms in common with the query are more likely relevant than
documents with n− 1 different terms held in common.

In query SH3 (Figure 6) we count the distinct PO-pairs that ?node=Sofia

shares with other nodes. We start with sub-query similar to SH2 to get the
first 500 distinct pairs, which Sofia shares with other nodes. Next all nodes that
share at least one of these PO-pairs with ?node=Sofia are grouped and sorted in
descending order by the number of shared PO-pairs. The top 10 results (Figure
7) results come close to what we expected: Varna, Plovdiv, Bulgaria, Europe,
History of Bulgaria, etc. While we are getting cities which are really similar to
Sofia, we also get countries, continents and historical articles, which is not what
we expected. To overcome this in SH4 we set additional restriction on the type
of the ?similar node to be dbo:City (Figure 8).

The results (Figure 9) show significant improvement: Plovdiv, Skopje, Bu-
dapest, Thessaloniki, Zagreb, etc. This are all similarly sized cities in Eastern
Europe. Note that the query does not use geographic proximity, population or

Fig. 6. Query SH3: Similar nodes by count of shared edges

Fig. 7. Results of SH3: Nodes similar to Sofia by count of shared edges

another other formal criteria. We achieved one of our goals - to retrieve similar
objects without exploration of the structure of the graph in order to figure out
which specific predicates and patterns should be used in the query. And we did
so with a fairly simple query, which implements a very basic IR technique and
takes only couple of seconds to evaluate against a graph of 2 billion statements.

Fig. 8. Query SH4: Similar nodes by count of shared edges, typed

Fig. 9. Results of SH4: Nodes similar to Sofia by count of shared edges, typed

7 Discussion

The experiments with VSM model, conducted so far, show that:

– The selection of the number of features is important (set to 500). Smaller
number does not allow for good differentiation of entities like IBM. Bigger
number makes computation for Google and alike too complicated;

– Filtering features by maximum popularity (TF) is beneficial. Currently the
threshold is set to 0.1 – lower values have negative impact on entities with
small descriptions. For instance, without such filter, for Ontotext that is
described with roughly 100 pairs, the pair <industry,software> expands
the list of candidates too much;

– Using feature popularity (information value) for weighting is needed and ben-
eficial. This confirms what we already know from the use of term frequency
(TF) for weighting in VSM for document retrieval. As a local information
is used the count of distinct shared pairs and for global information is used
sum of reciprocal popularity values for some normalization of the popularity
values in the range [0, 1], a kind of inverse document frequency.

– Using node importance (an adapted version of PageRank) helps. Note, that
we do not use this rank for weighting, we penalize big differences in the
importance between two nodes.

The setup used to experiment with VSM has its limitations. The main bottle-
neck is the golden standard. It is non clear how the decision that some company
should be in top 10 most similar companies was made. There are many cases
when the company is ranked as 11th or 12th which does not make similarity
measure less accurate. Thus the golden standard probably will be better to con-
tain not only positive and negative example but to allow fuzzy membership to
a certain extend.

A principal limitation in the VSM experiments presented above is that PO-
pairs are consider as independent features. Ideally, we should be able to take
into account similarities between predicates (relation types) and objects (target
nodes). For instance, the features <hasOfficeIn,SofiaOblast> and <locatedIn,Sofia>

are not 100% unrelated. In the following section we report initial results from
experiments, which addresses this problem.

8 Conclusion and Further Work

We demonstrated that IR techniques can be adapted to perform search for sim-
ilar nodes in a knowledge graph. We implemented the VSM, treating each node
in the graph as document and its outgoing edges predicate-object pairs as terms,
which describe it. Reasoning also contributed to the final result by increasing the
connectivity in the graph and making sure that commonalities between nodes
will not be missed, because, for instance, a more specific predicate (sub-property)
has been used for one node and more general one for the other.

This model has been implemented via SPARQL queries against a graph of
more than 2 billion statements, central to which is DBPedia. It should be rec-
ognized that DBPedia is very special graph and such trivial IR techniques may
not be able to bring decent results on graphs which are less interconnected and
concise.

These experiments are extended in [2] to include weighing of PO-pairs by
”popularity”, graph analytics (namely PageRank) and news co-occurrence and
perform proper evaluation.

While it delivers useful results, when tuned for a specific case (similarity of
cities), we were quite aware of its principled limitation - it deals with discrete
features, i.e. <locatedIn,Manhattan> and <headquarteredIn,NewYorkCity>

are treated as completely different features. To address this in [2] we extended the
experiment developing a bigger corpus and employing few of the most popular
graph embedding techniques, which bring some flavour of latent semantics.

References

1. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: Owlim:
A family of scalable semantic repositories. Semantic Web 2(1), 33–42 (2011)

2. Boytcheva, S., Kiryakov, A., Gyurov, P.: Similarity search in knowledge graphs:
Vectorspace model and embedding. In: Knowledge, Language Models, (eds. Milena
Slavcheva, Kiril Simov, Petya Osenova, Svetla Boytcheva). Incoma (2020)

3. Hliaoutakis, A., Varelas, G., Voutsakis, E., Petrakis, E.G., Milios, E.: Information
retrieval by semantic similarity. International journal on semantic Web and infor-
mation systems (IJSWIS) 2(3), 55–73 (2006)

4. Klyne, G., Carroll, J.J., McBride, B.: Resource description framework
(rdf): concepts and abstract syntax, 2004. February. URL: http://www. w3.
org/TR/2004/REC-rdf-concepts-20040210 (2009)

5. Losee, R.: Probabilistic retrieval and coordination level matching. Journal of the
American Society for Information Science 38(4), 239–244 (1987)

6. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Communications of the ACM 18(11), 613–620 (1975)

7. Vijaymeena, M., Kavitha, K.: A survey on similarity measures in text mining. Ma-
chine Learning and Applications: An International Journal 3(2), 19–28 (2016)

A Appendix 1: SPARQL Queries

This paper provides queries that implement VSM-like node similarity in Fact-
Forge along with snapshots from query results. FactForge represents a graph of
over 2 billions statements (see section 4) loaded in GraphDB and publicly avail-
able for exploration at http://factfroge.net These queries are also available
in FactForge as Saved queries.

Follows a list of prefixes used across the queries

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbp: <http://dbpedia.org/property/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX gn: <http://www.geonames.org/ontology#>

PREFIX dct: <http://purl.org/dc/terms/>

PREFIX dbc: <http://dbpedia.org/resource/Category:>

PREFIX ff-map: <http://factforge.net/ff2016-mapping/>

PREFIX wd: <http://www.wikidata.org/entity/>

