
Similarity Search in Knowledge Graphs: Vector
Space Model and Graph Embedding

Svetla Boytcheva1,2, Atanas Kiryakov1, and Pavlin Gyurov1

1 Ontotext, Sirma AI, Sofia, Bulgaria
{svetla.boytcheva,atanas.kiryakov,pavlin.gyurov}@ontotext.com

2 Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences, Bulgaria

svetla.boytcheva@gmail.com

Abstract. Exploring diverse knowledge graphs with SPARQL queries
requires a laborious process of determining the appropriate predicates,
classes and graph patterns. Another drawback is that such structured
queries represent Boolean search without relevance ranking, which is im-
practical for flexible querying of big volumes of data. We present an
experiment of adaptation of the Vector Space Model (VSM) document
retrieval technique for knowledge graphs. As a demonstration we im-
plemented SPARQL queries, which retrieve similar companies in Fact-
Forge - a graph of more than 2 billion statements, combining DBPedia,
Geonames and other data. Initial evaluation shows that graph analytic
technique PageRank can improve the F-Score of the VSM baseline from
66% to 73%. The use of industry classifications and news mentions bring
together another 5% improvement. At the end we present early exper-
iments on the usage of graph embedding techniques to solve the same
problem: the best performing methods are HolE, TransD and ComplEx.

Keywords: Knowledge Graphs · Similarity · Graph Embedding .

1 Motivation

In a big data era, characterized by 5V3 (volume, velocity, variety, veracity, and
value) knowledge management is a quite challenging task and requires the de-
sign and development of new smart and efficient solutions. One prominent new
paradigm are the so-called Knowledge Graphs (KG), which put data in context
via linking and semantic metadata and this way provide a framework for data
integration, unification, analytics and sharing. Given a critical mass of domain
knowledge and good level of connectivity, KGs can serve as context that helps
computers comprehend and manipulate data.

Data in KG is accessed via structured query languages such as SPARQL4.
Defining SPARQL queries involves determining the right classes, predicates,
graph patterns and filters. This is not a problem for graphs which represent

3 https://www.bbva.com/en/five-vs-big-data/
4 http://www.w3.org/TR/sparql11-overview/

uniform information for single application. However the most interesting applica-
tions of KGs involve putting together data from multiple proprietary databases,
encyclopedic knowledge (e.g. Wikipedia) and domain specific data and mod-
els (e.g. Geonames or SNOMED). Such graphs typically contain billions of facts,
about millions of concepts and entities from thousands of classes, connected with
thousands of different relationship types. Crafting useful SPARQL queries for
such graphs can be a very laborious process. Another drawback of SPARQL, as
s mechanism to access such graphs, is that structured queries represent Boolean
search without relevance ranking, which is impractical for big volumes of diverse
data. Often there are thousands of results that match the formal criteria, but
what is really needed are the top 10 of those, ranked by relevance or importance
(whatever the criteria).

There is a need for more advanced information retrieval models, resembling
the web-scale full-text search techniques, which allow obtaining relevant infor-
mation without the need of massive efforts of highly qualified librarian. Such
techniques can help not only data exploration, but they can also be used for
data management tasks such as reconciliation (linking and fussing information
about one and the same object across different sources) and data cleaning (e.g.
detecting duplicates).

For all those functionalities we need to be able to compare entities in the KG
and to do judgment about their proximity. There are several proximity metrics,
but we are looking for one that is human like and matches human expectations.
Such proximity measure should not be dominated by the ”popularity” of the
entities, for instance, 9 of the top-10 most popular companies in the sector to be
considered most similar to the 10th one. They should not be dominated by a sin-
gle characteristic of the entity, e.g. revenue. There is not a necessity of any direct
relations to exist between the entities, e.g. to judge Google similar to Alphabet
because those are related with subsidiary relationship. We can already retrieve
related objects using without using advanced information retrieval techniques.
Objective: To find similarity measure for nodes in a KG.

Hypothesis: Similar nodes share features and have similar ranks.
This paper extends the experiments with adaptation of VSM model which

are reported in [6].

2 The Data

The experiments in this paper are performed on FactForge5 - a KG of Linked
Open Data (LOD) and news articles about people, organizations and locations.
It includes:

– DBpedia6 (the English version) - an RDF-ized version of Wikipedia ,
– GeoNames7 - exhaustive geographic information about populated places,

countries and other features on Earth,

5 http://factforge.net
6 http://wiki.dbpedia.org/
7 http://www.geonames.org/

– The Financial Industry Business Ontology (FIBO),
– News metadata from NOW8 - a Semantic News Portal loaded with more

than 1 million international news articles in English, continuously collected
since year 2015. Articles are semantically annotated, [7], with references
to DBPedia concepts and entities mentioned in the text – on average 50
references per article.

The entire graph contains more than 2 billion explicit statements loaded
in Ontotext GraphDB – a semantic graph database engine, formerly known as
OWLIM, [2]. GraphDB performs forward-chaining reasoning to infer another 300
million statements. Thus more than 2.5 billion facts are indexed in FactForge
and available for public querying and exploration.

3 Adapting the Vector Space Model for Graphs

In FactForge data is represented in RDF, [8], where each edge in the graph repre-
sents a triple <subject, predicate, object>. The subject is the source edge,
represented by a unique identifier of the resource (concept, entity, document,
etc.) being described. The predicate represents the type of the relationship. The
object is the target node, which could be either identifier of another resource or
an XML literal.

To adapt VSM, [10], for searching for similar nodes in a KG, we will consider
nodes as documents and the outgoing edges (PO-pairs) – as terms. Node nodei
will be represented by the following vector of the weighted PO-pairs in the graph,
where n is the total number of all distinct PO-pairs in the graph.

nodei = 〈poi1, poi2, · · · , poin〉 (1)

One can find description of the VSM and its adaptation to KG in [6].
The main concern is that there could be too many different PO-pairs in the

KG. For instance, for FactForge it would be a vector space with more than 1
million dimensions. Thus, for reduction of the dimensions some restrictions for
the search space are needed.

4 Experiments on node similarity crafted in SPARQL

We present a series of experiments of implementing the node similarity in Fact-
Forge based on the above VSM adaptation using SPARQL queries.

The experimental setup contains the following sub-tasks:

– SH1 and SH2: Shared PO-pairs identification and filtering by predicate
– SH3 and SH4: Similar nodes by count of shared edges
– SH5: Shared edges, ranked by popularity
– SH6: Similar nodes by weighted sum of shared edges and PageRank

8 http://now.ontotext.com

The first two experiments (queries SH1 to SH4) are presented in [6], where
we got encouraging results when retrieving cities similar to a given one. The
SPARQL queries needed to do that were quite simple also. However, when we
tried the same rudimentary techniques for people and companies it becomes
obvious that PO-pairs has to be weighted with regard to their ”popularity” and
information value.

4.1 Edge ”popularity”

Obviously not only the number of shared PO-pairs plays important role in the
similarity of two nodes in the KG. Like in the VSM for documents the term
frequency is important, the ”popularity” of PO-pair is also important. This
experiment (Figure 4) aims to find the top 300 PO-pairs of the pairs describing
?node=Sofia, ranked frequency of appearance in the graph. The results show
(Figure 5) that these PO-pairs refer to very general features – like being located
on Earth or a specific continent and etc. Like stop words in document retrieval,
these PO-pairs do not contribute to the similarity measure and needs to be
skipped from further consideration.

An improved version of SH5A (Figure 6) filters the most general PO-
pairs, like predicate gn:parentFeature combined with Earth, the continents and
United States. The results (Figure 7) show some improvement. Alongside with
geographical locations there were also other features, e.g. timezone +2 and rela-
tions to politics and history like communism, Ancient Rome, Austria-Hungary,
Byzantine Empire, Eastern Orthodox Church, etc.

4.2 Node similarity as weighted sum of shared edges

Using the PO-pair popularity from the previous experiment we want to try
node similarity, which goes beyond counting (CLM). We use the global PO-pair
popularity as weight, analogous to using TF as weight for terms in document
retrieval.

Let k be the number of all shared PO-pairs of a node n with some other
nodes and 〈po1, po2, · · · , pok〉 be their corresponding popularity values in the
graph. We reduce the vector space V dimensionality to only those k PO-pairs.
Then the nodes that share PO-pairs with the node n can be represented as
vectors in this vectors space:

nodei = 〈wi1, wi2, · · · , wik〉 (2)

Where

wij =

{
1

poi
, if nodei is linked to the jth PO-pair

0, otherwise
(3)

Let define the set of PO-pairs shared by the node n and nodei in the vector
space V as:

pi = {j | 1 ≤ j ≤ k and nodei is linked to the jth PO-pair} (4)

The similarity measure between the given node n and some other node nodei
is calculated by:

s(n, nodei) =

k∑
j=1

√
wiwij =

∑
j∈pi

√(
1

poi

)2

=
∑
j∈pi

1

poi
(5)

The example attempts to find the organizations most similar to ?node=

dbr:Microsoft. We use this switch from cities to organizations for two reasons.
First, it turns out to be harder to derive similarity for companies, as compared
to cities - the counting edges experiment does not bring useful results for com-
panies. Second, finding similar companies has numerous business applications,
e.g. identifying potential clients, suppliers or companies to invest in.

The query on Figure 8 in Appendix 1 implements this measure; its only bulky
part is the sub-query that calculates the PO-pairs popularity like in SH5B. We
filter the similar nodes we are searching for to be of type dbo:Organisation only.
The results contain both the total number of shared PO-pairs (for information
only) and the similarity score. The top N=20 ranked nodes in descending order
by the similarity score are selected as a result (Figure 9). In this case similarity
score is not normalized in the range [0, 1], and greater values of s(x, y) refer
to more similar objects. We can observe that as more related to Microsoft are
recommended companies like Microsoft Studios, Microsoft Mobile and Microsoft
Store, that are highly related to it as subsidiary, branch, etc.

We are still missing in this list all top software companies like IBM, Alphabet,
Facebook, Oracle, SAP, Symantec, VMware, Baidu, etc. which are similar in size
and have similar offerings to Microsoft across their various product lines. The
only result that is expected and shown up among the top 10 similar companies
is Intel.

4.3 Feature filtering and logarithmic weights

The next modifications of this experiment SH6B (Figure 10) try to overcome
these problems:

1. Additional filters were included to avoid some unintended relations and PO-
pairs:

(a) Filtering of the related entities, particularly parents and subsidiaries,
because we are looking for similar nodes, not for related ones.

(b) Filtering out PO-pairs that generalize another pairs, i.e. not adding to
the score a pair if there is another relation between the nodes that is
rdfs:subPropertyOf of the predicate of the current PO-pair.

(c) Filtering PO-pairs related to locations, in order to reduce weight of
redundand PO-pairs: ff-map:primaryCity, ff-map:primaryCountry,
dbo:location.

2. Improved version of the similarity measure is used – PO-pair weight in SH6A
was calculated as popularity (total count of occurrence) value. In SH6B the
weight value is inspired by classical IDF, i.e. −log(P (j)), where P (j) is the
probability PO-pair j to occur for the node n. According to the definition
of the probability: P (j) = popularity of j

k , where k is the total number of all
PO-pairs related to n. Because k is the same for all PO-pairs and it does
not play role in the comparison for similarity measure and ranking, thus
the value of k is omitted. In this version is used the following definition for
weights

nodei = 〈wi1, wi2, · · · , wik〉 (6)

wij =

{
1

log(poi+1) , if nodei is linked to the jth PO-pair

0, otherwise
(7)

Where a correction by +1 is made in the logarithm in order to avoid division
by zero and log-transformation is used to reduce the variability of data.

s(n, nodei) =

k∑
j=1

√
(wiwij) =

∑
j∈pi

√(
1

log(poi + 1)

)2

=
∑
j∈pi

1

log(poi + 1)

(8)
where pi is defined as in equation (5).

In SPARQL query for SH6B (Figure 10) we initially selected top N=500
ranked PO-pairs linked to the node n, with the highest weight (wij = ?pair weight).
Then we filter unintended relations applying filtering described in 1a), 1b), and
1c). Finally we select the top N=100 ranked similar nodes according to the
similarity measure s(n, nodei).

The results (Figure 11) show significant improvement and the majority of
expected results are present. However, still some odd companies appear, like
21Vianet Group – the exclusive operator of Microsoft Azure and Office 365 ser-
vices in China. Although this company has less shared PO-pairs with Microsoft
than the other companies, the total weight is comparable with the top candi-
dates. One of the main disadvantages of TF is that it favorizes rare PO-pairs.

In order to speed up the similarity evaluations, the next optimization of the
query SH6C (Figure 12) counts on pre-calculation of the PO-pairs weights. It
applies the same filtering like in SH6B, but it executes much faster as the global
information about the PO-pair popularity is not calculated each time. To solve
the problem with too rare PO-pairs, additional filtering is included, cutting those
of them with weight below the threshold of 10%, i.e. ?pair weight <=0.10.

4.4 Difference in PageRanks as penalty

In SH6C we also extend the VSM proximity with a new consideration: the impor-
tance of the nodes in the graph, using PageRank, [3] as a measure of centrality
and popularity. GrapnDB comes with RDFRank plug-in, which calculates the

PageRank-s of all nodes in a given RDF graph. Those can be accessed with sys-
tem predicates, e.g. rank:hasRDFRank3 gets the rank of the node with precision
of three digits. The rank is used for dissimilarity measure, where distance be-
tween two nodes is measured as the difference between their ranks. For similarity
is used the idea of TF-IDF.

d(n, nodei) = |rank(n)− rank(nodei)| (9)

s(n, nodei) =

∑
j∈pi

1

log(poj + 1)

 (1− d(n, nodei))
q

(10)

Some experiments are performed for values of q = 1, 2, 3, 4. Different values of q
allow the dilution of the function values around the two critical points 0 and 1
for s(x, y) = (1− d(x, y))q.

The results of SH6C for q = 4 (Figure 13) show that the problem with
outlier is solved for the case of Microsoft. The major problems with false positive
examples are:

– Big number of shared specific features take dominance;
– Joint-stock company;
– Participation in competitions;
– Shared locations;
– Links to countries and cities.

5 Evaluation of the VSM adaptation

For evaluation of the proposed similarity measure we developed a small golden
standard (Figure 1) for some famous companies, for which the human expec-
tations and the proposed similarity rank can be assessed easily. The golden
standard contains 102 pairs of companies.

The golden standard contains manually evaluated pairs of companies with
respect of their appearance in top-10 similar companies by (True/False). The
automatic marks are classified as: ”correct match Tp” (This guess is correct);
”missing match Fn” (There is a missing guess-reduces Recall); ”incorrect match
Fp” (Incorrect similarity guess); ”expected miss Tn” (Not scored similar, as
expected).

Evaluation metrics:

Precision =
Tp

Tp + Fp
(11)

Recall =
Tp

Tp + Fn
(12)

F1 = 2× Precision×Recall

Precision + Recall
(13)

Accuracy =
Tp + Tn

Tp + Fp + Tn + Fn
(14)

Fig. 1. Company similarity golden standard

Accuracy w/o Fn(AF) =
Tp + Tn

Tp + Fp + Tn
(15)

Baseline (1− d)2 (1− d)3 (1− d)4 (1 − d)4 −
Industry

(1 − d)4 −
Industry −Now

Recall 85.2% 75.9% 79.6% 79.6% 83.3% 79.6%

Precision 54.1% 57.7% 63.2% 66.2% 71.4% 75.4%

F1 66.2% 65.6% 70.5% 72.3% 76.9% 77.5%

Accuracy 48.04% 51.96% 58.82% 61.76% 70.59% 72.55%

Accuracy w/o Fn 52.69% 60.92% 67.42% 70.79% 77.42% 81.32%
Table 1. Evaluation of similarity metrics for Company Graph golden standard

The evaluation results (Table 1) show that the highest Recall is obtained for
the baseline (SH6A) and the highest Precision and F1-measure for modification
of the SH6C experiment with adding information about Industries and company
popularity and co-occurrence in the news by Now9. We experimented also with
some other similarity measures, which also demonstrated good performance in
terms of ”Accuracy w/o Fn (AF)”. This is the case of s(x, y) = e−d(x,y) with
AF=81.82%. AF is an important evaluation, because when there are too many
similar objects in the vector space, it is not possible for all of them to appear
in the first top 5 and top 10 results, and many of them remain outside the
evaluation subsets and are mistaken for Fn, only due to the limitations of the
subset tested.

9 https://now.ontotext.com/#channel

6 Discussion on the VSM adaptation

The experiments with VSM model, conducted so far, show that:

– The selection of the number of features is important (set to 500). Smaller
number does not allow for good differentiation of entities like IBM. Bigger
number makes computation for Google and alike too complicated;

– Filtering features by maximum popularity (TF) is beneficial. Currently the
threshold is set to 0.1 – lower values have negative impact on entities with
small descriptions. For instance, without such filter, for Ontotext that is
described with roughly 100 pairs, the pair <industry,software> expands
the list of candidates too much;

– Using feature popularity (information value) for weighting is needed and ben-
eficial. This confirms what we already know from the use of term frequency
(TF) for weighting in VSM for document retrieval. As a local information
is used the count of distinct shared pairs and for global information is used
sum of reciprocal popularity values for some normalization of the popularity
values in the range [0, 1], a kind of inverse document frequency.

– Using node importance (an adapted version of PageRank) helps. Note, that
we do not use this rank for weighting, we penalize big differences in the
importance between two nodes.

The setup used to experiment with VSM has its limitations. The main bottle-
neck is the golden standard. It is non clear how the decision that some company
should be in top 10 most similar companies was made. There are many cases
when the company is ranked as 11th or 12th which does not make similarity mea-
sure less accurate. The GS probably will be better to contain not only positive
and negative example but to allow fuzzy membership to a certain extend.

A principal limitation in the VSM experiments presented above is that PO-
pairs are consider as independent features. Ideally, we should be able to take
into account similarities between predicates (relation types) and objects (target
nodes). For instance, the features <hasOfficeIn,SofiaOblast> and <locatedIn,Sofia>

are not 100% unrelated. In the following section we report initial results from
experiments, which addresses this problem.

7 Knowledge Graph Embedding

Our second series of experiments towards nodes similarity makes the following
extensions:

– We introduce 4 grades of similarity: Very similar, Plenty of important simi-
larities, Mostly different with some similarity, Dissimilar. It practice human
experts find it hard to judge only in two grades (similar-dissimilar);

– A bigger and more systematically developed golden standard;
– Using graph embedding techniques, instead of vanilla VSM.

Fig. 2. Ratio of pairs of companies annotated in the four categories: 1- ”Dissimilar”, 2-
”Mostly different with some similarity”, 3 -“Plenty of important similarities”, 4 -“Very
similar”

7.1 Golden Standard for Similarity of Companies in DBPedia

Taking into account the problem with the size and representativeness of the
golden standard (GS), we developed a new one that covers all 24 industrial
sectors at level two of GICS10. Some 2300 pairs of companies for all sectors
(approx. 100 pairs per sector) were annotated manually with four grades of
similarity (see Fig. 1). The average inter-annotator agreement was about 71%,
which shows that even for a person the assessment of similarity between two
companies is a very difficult and ambiguous task, despite the clear rules and
criteria in the methodology for building the GS. We selected 4 companies from
each sector from DBpedia and asked experts to judge their similarity with top
25 similarity candidates generated for each of them by SH6C SPARQL query
from the VSM experiments. In total 1898 different companies were included in
the GS. Although a large GS was created, the main problem of KG scarcity
is still not overcome, as for many of the features there is no value, there is
a huge variability of URIs that are associated with the same value and not

10 https://www.spglobal.com/marketintelligence/en/documents/112727-gics-
mapbook 2018 v3 letter digitalspreads.pdf

mapped in the KG. For example, for locations, products, etc. The sparseness
of KG is one of the main reasons for low accuracy in the search for similarity,
as important relationships between objects are omitted. DBPedia borrows both
the advantages and the disadvantages of Wikipedia - it has great coverage and
high level of connectivity, but descriptions are sometimes quite irregular.

The evaluation of the proposed vector spaces models over the new GS show
that the accuracy vary for different sectors from lowest about 10% (for ”Food,
Beverage & Tobacco Food, Beverage & Tobacco”, ”Capital Goods”, ”Automo-
biles & Components”) up to about 45% (for ”Pharmaceuticals, Biotechnology”,
”Banks”, ”Telecommunication Services”, ”Food & Staples Retailing”), and in
average 24.95% for all sectors.

7.2 KG Embedding Techniques

The results achieved with a naive implementation of VSM motivated us to search
for other methods that can be applied for the similarity task. Currently the state
of the art approaches are based on the so called graph embedding [4]. They
rely on an initial representation in low-dimensional VSM of the entities and
relations, as well as evaluation of the plausibility of each edge in the graph. Then
vectors for each node and edge are adjusted in the course of several iterations
of updating the embedding vectors by using different optimization techniques
in order to maximize the global plausibility of the facts expressed as edges in
the graph. The main disadvantage of such KG embedding models is that they
can be trained only on the observed facts, i.e. under closed world assumption.
The main advantage is that different additional properties of the entities are
taken in consideration, e.g. type of the entities, textual description, complex
paths and relations. The essence of this methods is that they derive ”latent
semantics” by means of analyzing co-occurrence. The embedding vectors for
edges <locatedIn,Sofia> and <hasOfficeIn,SofiaOblast> are expected to
have high proximity and on their turn to contribute to the proximity of two
nodes, e.g. companies, characterized by one of them and by the other.

The training dataset of RDF triples was generated on the top of the GS (pairs
of company identifiers with similarity judgement) enriched with additional in-
formation about the companies like: name, text description, location, industry,
main products, number of employees, revenue, etc. The resulting data set was
augmented with additionally generated similarity/dissimilarity triples and other
reflexive relations so that a high degree of connectivity was achieved with total
355711 RDF triples, 4695 entities and 21 relation types. Note that the graph
developed this way is much smaller and poorer compared to the original knowl-
edge graph used for the VSM experiments so far - the FactForge graph with
more than 2 billion statements.

7.3 Evaluation of graph embedding techniques

Experiments with this training data set was performed with several state-of-the-
art KG embedding methods. The best results were achieved for Semantic Vectors

[13] (Predication-Based Semantic Indexing, integrated in GraphDB as Semantic
Search plug-in), translation-based model TransD [5], tensor factorization-based
models HolE [9] [14] and ComplEx [11] [12]. So further experiments were limited
to them using the OpenKE toolkit11.

The head prediction scores were calculated for estimating similarity among
the companies of the GS. The Top 10 and Top 5 most similar companies were
calculated for each algorithm and was performed evaluation based no the GS (see
Table 3 and Table 2). The KG embedding models were trained with the default
hyper parameters. We also used the Graphlet approach (described below) – the
rows for these experiments are marked with ”Graph”.

Method Tp Fn Fp Tn precision recall F1 Accuracy AF

ComplEx 135 407 55 1576 71.05% 24.91% 36.89% 78.7% 96.9%

ComplEx Graph 65 477 31 1599 67.71% 11.99% 20.38% 76.6% 98.2%

HolE 104 437 85 1546 55.03% 19.22% 28.49% 76.0% 95.1%

HolE Graph 150 391 134 1496 52.82% 27.73% 36.36% 75.8% 92.5%

TransD 270 272 579 1052 31.80% 49.82% 38.82% 60.8% 69.5%

Semantic Vectors 58 484 80 1550 42.03% 10.70% 17.09% 74.0% 95.3%

Table 2. Evaluation for Top 5 results of the KG embedding models

Unsurprisingly, Top 5 comparisons have lower accuracy and F1 metrics than
top 10. Some examples for searching Top 10 similar companies to Prada by the
trained KG embedding model of HolE is shown on Figure 3.

Method Tp Fn Fp Tn precision recall F1 Accuracy AF

ComplEx 169 372 123 1508 57.88% 31.24% 40.58% 77.2% 93.2%

ComplEx Graph 85 456 55 1576 60.71% 15.71% 24.96% 76.5% 96.8%

HolE 160 382 166 1465 49.08% 29.52% 36.87% 74.8% 90.7%

HolE Graph 260 281 257 1373 50.29% 48.06% 49.15% 75.2% 86.4%

TransD 346 196 766 864 31.12% 63.84% 41.84% 55.7% 61.2%

Semantic Vectors 91 451 145 1485 38.56% 16.79% 23.39% 72.6% 91.6%

Table 3. Evaluation for Top 10 results of the KG embedding models

When the search space is too large one can apply recursive factorization of
the complex graph into sub-graph patterns of size k nodes (called Graphlets)[1].
Graphlets contain statistically significant information about the KG embedding
and provide fast, scalable and effective solution for large vector spaces.

11 http://139.129.163.161/index/toolkits#openke

In our Graphlet approach, using the existing trained KG-embedding model
for evaluating the similarity of the edges, the following heuristics were made: If
two companies have similar properties, they are likely to be similar.

The experiments and detailed result evaluation (not only the numbers, but
also the reasons behind them) showed much more relevant similarity scoring
compared to the original head prediction (see Table 3 and Table 2).

Fig. 3. Prada Graphlet results for top 10 with HolE

Moreover, the Graphlet approach also addresses the following drawback of
all the KG embedding algorithms - they work on observed facts in the training
dataset. Thus companies outside of the training dataset can not be evaluated.
However, if a ”new” company is ”defined” using the properties, literals, etc. from
the existing KG embedding model, the Graphlet approach provides functionality
to calculate the similarity of such ”new” company to the companies already
available in the KG embedding model.

There is a lot of further work for fine tuning of this approach, e.g. different
properties could have different weight when the similarity is calculated, when
some numeric literals are used, it might be more accurate if they are grouped in
intervals and these intervals to be used as property values and so on.

8 Conclusion and Further Work

We demonstrated that IR techniques can be adapted to perform search for sim-
ilar nodes in a KG. We implemented the VSM, treating each node in the graph

as document and its outgoing edges (predicate-object pairs) as terms, which de-
scribe it. The PO-pairs were weighed to reflect that the more popular pairs bring
less information value. We have proven that graph analytics (namely PageRank)
can improve the performance of the baseline VSM.

This model has been implemented via SPARQL queries against a graph of
more than 2 billion statements, central to which is DBPedia. It should be rec-
ognized that DBPedia is very special graph, based on the special properties of
Wikipedia: a very large set of highly interlinked descriptions of the most the
popular entities and concepts. What is most important, it is developed under
well determined editorial guidelines and processes. We should admit that such
IR techniques may not be able to bring decent results on graphs which are less
interconnected and concise.

The VSM experiment presented in the main body of the article served as
proof of concept that such techniques can be used for node similarity. While it de-
livers useful results, when tuned for a specific case (similarity of companies, which
are popular enough to the appear in Wikipedia), we were quite aware of its princi-
pled limitation - it deals with discrete features, i.e. <locatedIn,Manhattan> and
<headquarteredIn,NewYorkCity> are treated as completely different features.
To address this we extended the experiment developing a bigger corpus and em-
ploying few of the most popular graph embedding techniques, which bring some
flavour of latent semantics. Some additional improvement of the KG are needed
to overcome the problem with KG sparsity, like data cleaning, normalization to
standard classifications and thesauri, entity matching, literals transformation,
etc. The conclusion from the experiments so far is that the best performing
method is HolE (F-Score 49%), followed by TransD and ComplEx. Those easily
outperform that VSM implementation (F-Score 23%).

References

1. Ahmed, N.K., Neville, J., Rossi, R.A., Duffield, N.G., Willke, T.L.: Graphlet de-
composition: Framework, algorithms, and applications. Knowledge and Informa-
tion Systems 50(3), 689–722 (2017)

2. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: Owlim:
A family of scalable semantic repositories. Semantic Web 2(1), 33–42 (2011)

3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks 30(1), 107–117 (1998)

4. Dai, Y., Wang, S., Xiong, N.N., Guo, W.: A survey on knowledge graph embedding:
Approaches, applications and benchmarks. Electronics 9(5), 750 (2020)

5. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: Proceedings of the 53rd annual meeting of the association
for computational linguistics and the 7th international joint conference on natural
language processing (volume 1: Long papers). pp. 687–696 (2015)

6. Kiryakov, A., Boytcheva, S.: Similarity search in knowledge graphs: Adapting the
vector space model. In: Knowledge, Language Models, (eds. Milena Slavcheva,
Kiril Simov, Petya Osenova, Svetla Boytcheva). Incoma (2020)

7. Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic annota-
tion, indexing, and retrieval. Journal of Web Semantics 2(1), 49–79 (2004)

8. Klyne, G., Carroll, J.J., McBride, B.: Resource description framework
(rdf): concepts and abstract syntax, 2004. February. URL: http://www. w3.
org/TR/2004/REC-rdf-concepts-20040210 (2009)

9. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs.
arXiv preprint arXiv:1510.04935 (2015)

10. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Communications of the ACM 18(11), 613–620 (1975)

11. Scharffe, F., Liu, Y., Zhou, C.: Rdf-ai: an architecture for rdf datasets matching,
fusion and interlink. In: Proc. IJCAI 2009 workshop on Identity, reference, and
knowledge representation (IR-KR), Pasadena (CA US) (2009)

12. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. International Conference on Machine Learning
(ICML) (2016)

13. Widdows, D., Cohen, T.: Reasoning with vectors: A continuous model for fast
robust inference. Logic Journal of the IGPL 23(2), 141–173 (2015)

14. Xue, Y., Yuan, Y., Xu, Z., Sabharwal, A.: Expanding holographic embeddings for
knowledge completion. In: Advances in Neural Information Processing Systems.
pp. 4491–4501 (2018)

A Appendix 1: SPARQL Queries

Here we provide queries that implement VSM-like node similarity in FactForge
along with snapshots from query results. FactForge is a graph of over 2 billions
statements (see section 2) loaded in GraphDB and publicly available for explo-
ration at http://factfroge.net These queries are also available in FactForge
as Saved queries. We start with list of prefixes used followed by queries and
results.

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbp: <http://dbpedia.org/property/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX gn: <http://www.geonames.org/ontology#>

PREFIX dbc: <http://dbpedia.org/resource/Category:>

PREFIX ff-map: <http://factforge.net/ff2016-mapping/>

PREFIX wd: <http://www.wikidata.org/entity/>

Fig. 4. Query SH5A: Shared edges by popularity

Fig. 5. Results for SH5A: Shared edges by popularity

Fig. 6. Query SH5B: Shared edges by popularity, filtered most popular

Fig. 7. Results for SH5B: Shared edges by popularity, filtered most popular

Fig. 8. Query SH6A: Similar nodes by weighted sum of shared edges

Fig. 9. Results for SH6A: Similar nodes by weighted sum of shared edges

Fig. 10. Query SH6B: Similar nodes by weighted sum of shared edges, log-weight

Fig. 11. Results for SH6B: Similar nodes by weighted sum of shared edges, log-weight

Fig. 12. SPARQL query SH6C: Similar nodes by weighted sum of shared edges, log-
weight, optimized

Fig. 13. The top 10 results for SH6C with similarity for value q=4

