
Least Generalization under Relative Implication

Svetla Boytcheva

Department of Information Technologies,

Faculty of Mathematics and Informatics,

So�a University "St. Kliment Ohridski",

5 J. Bauchier Blvd.,

1164 So�a, Bulgaria,

svetla@fmi.uni-sofia.bg

Abstract. The main operators in Inductive Logic Programming (ILP)

are specialization and generalization. In ILP, the three most important

generality orders are subsumption, implication and implication relative

to background knowledge. The present paper discusses the existence of

least generalization under implication relative to background knowledge.

It has been shown that the least generalization under relative implication

does not exists in the general case, but, as argued in this paper, it exists

if the sets to be generalized and the background knowledge satisfy some

special conditions.

1 Introduction

Inductive Logic Programming (ILP) is a sub�eld of Logic Programming and
Machine Learning that investigates the problem of inducing clausal theories from
given sets of positive and negative examples. An inductively inferred theory must
imply all of the positive examples and none of the negative examples. The paper
is organized as follows. In section 2 some preliminary de�nitions of the concepts
used in the further discussion will be given. In Section 3 we will discuss existence
of least generalization under relative implication and it will be shown that it
does not exist in the general case, but exists if the sets to be generalized and
the background knowledge (BK) are of some special kind. The most interesting
and useful case is to �nd least generalization under relative implication(LGRI)
(which is a set of de�nite program clauses) for the BK and sets of positive and
negative examples that are de�nite program clauses. In section 3 it will be shown
that in this case, after imposing some additional restrictions to the given sets,
LGRI exists.

The LGRI exists for many other more particular cases of the given sets (for
details see [5, 6]). However in most of them the background knowledge is a set
of ground clauses or literals. Even the subsumption is weaker than implication,
LGRS not exists in the general case both for the clausal language and for a Horn
language. LGRS exists only for background knowledge sets of ground atoms.

2 Preliminaries

The de�nitions of the concepts used in the further discussion are given in this
section.

De�nition 1: Let � be a set of formulas and � a formula. Then � is said to be
a logical consequence of � (written as � j= �), if every model of � is a model of
�. If � j= �, we also sometimes say that � logically implies (or just implies) �.
If � = f g, this can be written as j= .

De�nition 2: Let � and � be sets of formulas. � is said to be a logical con-

cequence of �(written as � j= �), if � j= �, for every formula � 2 � . We alseo
sometimes say that � (logically) implies � .

De�nition 3: Let � be a set and R be a binary relation on � .

1. R is re�exive on � if xRx for every x 2 � .
2. R is transitive on � if for every x; y; z 2 � , xRy and yRz impies xRz.

3. R is symmetric on � if for every x; y 2 � , xRy impies xRy.
4. R is anti-symmetric on � if for every x; y 2 � , xRy and xRy, implies x = y.

If R is both reexive and transitive on � we say R is a quasi-order on � . If R is
both transitive and anty-symmetric on � we say R is a partial order on � . If R
is reexive, transitive and symmetric on � we say R is a equivalence relation.

De�nition 4: Let � be a set of clauses, � be a quasi-order on � , S � � be a
�nite set of clauses and C 2 � . If C � D for every D 2 S, then we say that C
is a generalization of S under �. Such a C is called a least generalization (LG)

of S under � in � if we have C 0 � C for every generalization C 0 2 � of S under
�.

Dually, C is a specialization of S under �, if D � C for every D 2 S. Such a
C is called a greatest specialization (GS) of S under � in � if we have C � C 0

for every specialization C 2 � of S under �.

Theorem 1 (Deduction Theorem): Let � be a set of formulas and � and
be formulas. Then � [f g j= � i� � j= (! �).

Preposition 1: Let � be a set of formulas and phi be a formula. Then � j= �

i� � [f:�g is unsatis�able.

De�nition 5: Let B be background knowledge (set of clauses) and C and D be
clauses. We will say that C logically implies D relative to B if fCg[B j= D and
we denote as C j=B D.

De�nition 6 (Concept learning problem): Given background knowledge B
and given sets of positive and negative examples P and N , the induction task
of a concept learning problem is to �nd a concept description in the form of a
logic program T that satis�es the following conditions:

1. T [B j= A for all A 2 P (posterior suÆciency)

2. T [B: j= A for all A 2 N (posterior satis�ability)

3. B: j= A for all A 2 N (prior satis�ability)

4. B: j= A for all A 2 P (prior necessity)

Every such program T is called a target program.

De�nition 7: Let H and B be sets of clauses and D be a clause. H is a least

generalization of D under relative implication(LGRI) to background knowledge

B, if H j=B D and for each set of clauses C, such that C j=B D is valid C j=B H .

De�nition 8: Let C and D be a clauses and � be a set of clauses. We say that
C subsumes D, denote C � D if there exists a substitution � such that C� � D.

De�nition 9: Let L be a �rst-order language. The Herbrand universe UL for
L is the set of all ground terms, which can be formed out of the constants and
function symbols appearing in L. In case L does not contain any constants, we
add one arbitrary constant to the alphabet to be able to form ground terms.

De�nition 10: Let L be a �rst-order language. The Herbrand base BL for L is
the set of all ground atoms, which can be formed out of the predicate symbols
in L and the terms in the Herbrand universe UL.

De�nition 11: Let L be a �rst-order language. The Herbrand preinterpretation

for L is the pre-interpretation J consisting of the following:

1. The domain of the pre-interpretation is the Herbrand universe UL.

2. Constants in L are assigned to themselves in UL. J(a) = a, a-constant

3. Each n-arity function symbol f in L is assigned the mapping Jf from Un
L to

UL, de�ned by Jf (t1; : : : ; tn) = f(t1; : : : ; tn).

De�nition 12: Let L be a �rst-order language and J a Herbrand preinterpreta-
tion. Any interpretation I , such that J � I is called a Herbrand interpretation.

De�nition 13: Let L be a �rst-order language, � a set of formulas of L, and
I a Herbrand interpretation of L. If I is a model of �, it is called a Herbrand

model of �.

De�nition 14: Clause C subsumes (or is more general than) clause D with
respect to logic program P if for any Herbrand interpretation I (for the language
of at least P;C;D) such that P is true in I , and for any atom A, C covers A
in I whenever D covers A. This is denoted C �P D. C is referred to as a
generalization of D, and D as a specialization of C.

All other concepts used above have the standard de�nitions. For more details
see [1{3, 5, 6].

3 Existence of Least Generalization Under Relative

Implication

In this section we will discuss the existence of least generalization under relative
implication.

For general clauses, the LGRI-question has a negative answer. We will sketch
the counter example given in [5, 6].

3.1 Example for Non-existence of LGRI in the General Case

Example 1: Even if S and the background knowledge � are both �nite sets
of function-free clauses, a LGRI of S relative to � does not necessarily exist.
Let D1 = P (a), D2 = P (b), S = fD1; D2g and � = f(P (a) _ :Q(x)); (P (b) _
:Q(x))g. We will show that S has no LGRI relative to �.

Suppose C is a LGRI of S relative to �. Note that if C contains the literal
P (a), then the Herbrand interpretation that makes P(a) true and which makes
all other ground literals false would be a model of � [fCg but not of D2, so we
have C 6j=� D2. Similarly if C contains P (b) then C 6j=� D1. Hence C cannot
contain P (a) or P (b).

Now let d be a constant not appearing in C. Let D = P (x) _ Q(d). Then
D j=� S. By the de�nition of the LGRI, we should have D j=� C. Then by
Subsumption Theorem [5], there must be a derivation from � [fDg of a clause
E, which subsumes C. The set of all clauses which can be derived (in 0 or more
resolution-steps) from � [fDg is � [fDg[f(P (a)_P (x)); (P (b)_P (x))g but
none of these clauses subsumes C, because C does not contain the constant d or

the literals P (a) and P (b). Hence D 6j=� C contradicts the assumption that C
is a LGRI of S relative to �.

Thus, in general LGRI of S relative to � need not exist.

3.2 Analyses of Some Properties of the Given Sets

Where is the weak point? Let's look again on the background knowledge set
� = f(P (a)_:Q(x)); (P (b) _:Q(x))g. We can present this set in the following
equivalent form � = f(Q(x) ! P (a)); (Q(x) ! P (b))g. The BK set � consists
of Horn clauses and we can represent it as the program:

p(a):-q(X).

p(b):-q(X).

We can see that two di�erent ground instances (P (a) and P (b)) of the pred-
icate P (x) can be inferred from an arbitrary grounding of Q(x) inferences. One
of the possible generalizations of the given set relative to the BK is:

p(Y):-q(X).

But there is no dependency between the variables X and Y , and this is not
a useful generalization, because it is not generative. Thus, some restrictions on
the BK and the set to be generalized must be made to ensure the existence
of a LGRI. Some examples of cases when a LGRI does exist will be given and
after analysing them we will formulate the requirements for the BK and the
initial set. Let the BK � = fC1; C2; : : : ; Cmg be a �nite set of clauses and
S = fD1; D2; : : : ; Dng be a �nite set of clauses. Additionally we suppose that:

{ a substitution �, such that Cibody� = Cjbody , for i 6= j does not exist
{ a predicate A such that A0 2 Cihead and A00 2 Cjhead, where A

0 and A00 are
ground instances of A, does not exist.

Example 2: Consider the following set of positive examples:

C1 = food(X):-tasty(X),strawberry(X).

C2 = food(X):-tasty(X), not_poisonous(X), mushroom(X).

The most obvious way to generalize them is to take their least generalization
under implication, which is the rather general and not very useful clause:

D = food(X):-tasty(X).

Suppose we have the following de�nite program� = fB1; B2; B3g, expressing
background knowledge:

B1 = plant(X):-mushroom(X).

B2 = plant(X):-strawberry(X).

B3 = not_poisonous(X):-strawberry(X).

Taking � into account, we may also �nd the more informative generalization
clause:

D' = food(X):- tasty(X), not_poisonous(X), plant(X).

D0 together with � implies both examples, but without the BK our clause
D0 does not imply the examples. For instance, not everything that has delicious
taste is eatable, some things can be poisonous or harmful for people.

In their article [7], Muggleton and Buntine described two operators based on
inverting resolution steps: the V- and the W-operator (�g.1).

Fig.1. The main view of the V-operator and the W-operator

Given C1 and R, the V-operator �nds C2 such that R is an instance of a
resolvent of C1 and C2. Thus the V-operator generalizes fC1; Rg to fC1; C2g. The
W-operator combines two V-operators, and generalizes fR1; R2g to fC1; C2; C3g,
such that R1 is an instance of a resolvent of C1 and C2, and R2 is an instance
of a resolvent of C3 and C2. In addition the W-operator is able to invent new
predicates.

Going back to the example described above it is easy to see, thatD0 is a result
of consecutively applying V- (see Fig.3) and W-operators(see Fig.2) under C1 ,
C2 and clauses of �.

D’ = food(X) :- tasty(X),
 not_poisonous(X), plant(X).

B1= plant(X) :- mushroom(X)B2= plant(X) :- strawberry(X)

F = food(X) :-
tasty(X),
not_poisonous(X),
strawberry(X).

C2 = food(X) :-
tasty(X),
not_poisonous(X),
mushroomy(X).

Fig.2. The W-operator applyed on C2; B1; B2 and F

Let D is the result of the W-operator applyed on C2; B1; B2 and F . D is the
LGRI of fC1; C2g under fB1; B2; B3g.

F= food(X):-tasty(X),
not_poisonous(X), strawberry(X).

B3= not_poisonous(X) :- strawberry(X).

B3= not_poisonous(X) :- strawberry(X)

Fig.3. The V-operator applied on C1 and B3

Let F1 is the result of the V-operator applied on C1 and B3.

3.3 More De�nitions

These two operators require some restrictions on the type of the given clauses.
The following de�nitions will help us to describe some of them.

De�nition 15: Let C be a clause. C is a generative clause if all variables in
Chead are contained in Cbody.

De�nition 16: Let C be a clause and � be a set of clauses. Let C contain n
di�erent variables. C is a determined clause with respect to � if after binding
n� 1 variables of C with terms of � for the remining variable of C there exists
a unique substitution that binds this variable with a term contained in �.

De�nition 17: Let � = fC1; C2; : : : ; Cmg and S = fD1; D2; : : : ; Dng be �nite
sets of clauses. S has an absolute model under � if for each Di 2 S and for each
literal L 2 Dibody there exists a clause E = fsome Cj 2 � or some Dj 2 Sg,
and a substitution � such that L� 2 E.

For a clause C2 to exist, the V-operator requires C1 and R to be generative
clauses.

For clauses C1, C2 and C3 to exist, the W-operator requires R1, R2 to be gen-
erative clauses. The found clause C3 is generative and determined with respect
to the set fR1; R2; C1; C2g.

The clauses R1, R2 have one and the same head, hence the clause C3 will
have the same head and the clause C2 will be a generalization of the set of clauses
fR1; R2; C1; C3g.

Suppose that R1, R2 are members of the given set of clauses, that we would
like to generalize and C1 and C3 are clauses from the background knowledge.

We can consider C2 as a generalization under implication of R1, R2 relative to
background knowledge set fC1; C3g.

The clause C2 is a LGRI of R1, R2 because it is generated by one resolution
step.

If the set that will be generalized has an absolute model under background
knowledge then we can easily combine clauses from the given set and the BK in
V- and W-operators.

The previous discussion enables the formulation of the following theorem.

3.4 Theorem of Existence of LGRI in Limited Case

Theorem 2: Let � = fC1; C2; : : : ; Cmg be a �nite set of function-free de�nite

program clauses and S = fD1; D2; : : : ; Dng be a set of function-free de�nite

program clauses and all Di have the same predicate symbol in their heads and at

least one of them is non-tautologous. If S has an absolute model under � and

all the clauses of S are generative and � 6j= S, then a LGRI of S relative to �

exists.

Proof: Let � = fC1; C2; : : : ; Cmg be a �nite set of function-free de�nite pro-
gram clauses and S = fD1; D2; : : : ; Dng be a set of function-free de�nite program
clauses and all Di have the same predicate symbol in their heads and at least one
of them is non-tautologous. The LGRI T of S relative to � exists if for every
Ci; Cj 2 � there does not exist a substitution � such that Cibody� = Cjbody ,
and there does not exist a predicate A such that A0 2 Cihead and A00 2 Cjhead,
where A0 and A00 are ground instances of A and for every Di 2 S and for every
literal L 2 Di there exists clause E = fsome Cj 2 � or some Dj 2 Sg and a
substitution � such that L� 2 E.

Then T 6j=� Di i� fTg [� j= Di i� T j= Di [:�. It remains to be
shown that Di [:� is a set of function-free clauses and at least one of them is
non-tautologous. Then by the theorem for existence of the least generalization
under implication (LGI) [5, 6], it will follow that a generalization H exists. The
clauses of the set Di [:� are function-free, as required in the condition of the
theorem. Since each Dj 2 S has the same predicate in its head, each clause in
T = f(D1 [:�); (D2 [:�); (Dn [:�)g will contain the same predicate in its
head.

Because of the conditions of the theorem, each of the elements of T is a
de�nite program clause.

It remains to show that T = f(D1[:�); (D2 [:�); (Dn [:�)g contains at
least one non-tautologous clause. Suppose that all clauses in T are tautologous.
From the de�nition of tautologous clause we conclude that every interpretation
is a model of the clauses in T , in other words j= Di[:�, hence � j= Di for each
Di 2 S, hence � j= S, but this is a contradiction with the theorem conditions.

So, T is a set of de�nite program clauses and at least one of them is non-
tautologous. From the theorem for existence of LGI (see [5, 6]), we obtain that
there exists a LGI H of T and H will be a LGRI of S relative to �.

Why do we need the sets' restrictions in the theorem 2? Are they too strong
or not?

Most of the restrictions are necessary, because of the V- and W-operators
requirements for the existence of the generalization clause and its computability.

The restriction � 6j= S is imposed by the de�nition of the concept learning
problem (prior necessity).

The restriction of the set S to contain one and the same predicate symbol in
their heads is imposed by the necessity for the obtained LGRI of S under BK to
be a program, that gives the de�nition of the concept, coded by this predicate
symbol.

The other restrictions come from the analysis of the contradiction example
mentioned above and from the requirement for the background knowledge to be
consistent.

3.5 Computability of LGRI

This LGRI is computable because, it is a kind of LGI, which is computable.
There are exists algorithm for construction of LGI of given sets. This algorithm
is not very eÆcient. A more eÆcient algorithn may exist but since implication
is harder than subsumption and the computation of an LGS is already quite
expensive we should not put our hopes too hight. Nevertheless the existence
of the LGI-algorithm does establishe the theoretical point that the LGI of any
�nite set of clauses containing at least one non-tautologous function-free clause
is e�ectively computable.

4 Conclusion

The presented case of existence of a least generalization under relative impli-
cation helps us to search for generalizations of the concepts presented by most
natural and often used types of sets and background knowledge. In the con-
cept learning problem, usually examples are presented as ground literals and/or
de�nite program clauses, and the background knowledge is a program. It is rea-
sonable to expect that the LGRI of these sets will be a program too.

The contribution of this paper is the discovery of a more general (than those
described in the literature) case of existence of least generalization under rela-
tive implication. This result can be used for several applications in the �eld of
Machine learning, such as automated generation of concept de�nitions, improve-
ment of predicate de�nitions and other kinds of concept generalization.

In the further work a simpler algorithm for �nding the least generalization
under relative implication will be presented concerning the described cases.

Another line of research is to �nd other cases of existence of LGRI.

5 Acknowledgements

I would like to thank Zdravko Markov and Ani Nenkova for their comments,
which helped to improve this paper.

References

1. W.Buntine, Generalized Subsumption and Its Applications to Induction and Re-

dundancy, Arti�cial Intelligence, 36(2),149-176, (1988).

2. P. van der Laag, An anlyses of re�enment operators in inductive logic programming,

Ph.D thesis, Tinberg Institute Research Series, Rotherdam, (1995).

3. J.W.Lloyd, Foundations of Logic Programming, Springer-Verlag Berlin Heidelberg,

(1984).

4. Z. Markov, Machine Learning, Softex, (1996) (in Bulgarian).

5. S-H. Nienhuys-Cheng and R. de Wolf, Foundations of Inductive Logic Programming,

Springer-Verlag,Berlin Heidelberg, (1997).

6. S-H. Nienhuys-Cheng and R. de Wolf, Least generalizations and greatest specializa-

tions of sets of clauses, Journal of Arti�cial Intelligence, 4:341-363, (1996).

7. S. Muggleton and W. Buntine, Machine invention of �rst-order predicates by invert-

ing resolution. In J.Laird editior, Proceedings of the 5th International Conference

on Machine learning (ICML-88),pages 339-352, Morgan Kaufman, San Mateo, CA,

(1988).

