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Language modeling

autoregressive language modeling
language modeling: estimate the probability distribution of sentences

a sentence T of length n is a sequence of tokens
w1, . . . , wn ∈ [1, . . . ,K]

autoregressive decomposition: estimate the probability of each token
given its prefix

p(T ) = p(w1, . . . , wn)

=
n∏

i=1

p(wi|w1, . . . , wi−1) (chain rule)
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Language modeling with neural networks

neural network probability estimator

p(wi = k|w1, . . . , wi−1) = fk(w1, . . . , wi−1; θ)

f is a neural network with parameters θ that computes a vector of K
probabilities

general structure:

f(w1, . . . , wi−1) = softmax(Proj(Seq(Emb(w1), . . . , Emb(wi−1))))

Emb(k) =WEmb
: ,k : word embeddings WEmb ∈ Rd×K

Seq(x1, . . . , xi−1): sequence combinator
Proj(s) =WOut · s: output projection WOut ∈ RK×d.

usually WOut = transpose(WEmb) [Press and Wolf, 2017]
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Training

Maximum Likelihood Estimation

maximize the log-likelihood of the training set {T (j)} under the model

argmax
θ

∑
j

n(j)∑
i=1

log p(w
(j)
i |w

(j)
1 , . . . , w

(j)
i−1)

mini-batch stochastic gradient descent

adaptive learning rate and momentum (e.g. Adam optimizer)

other training criteria can be used (e.g. reinforcement learning,
GANs)

in practice it’s hard to do better than MLE
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Convolutional language model [Bengio et al., 2003]

s1 s2 s3 s4 s5

y1 y2 y3 y4 y5

x0 x1 x2 x3 x4

<S> the cat is on

Fixed width sliding window of lenth L
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Convolutional language model

s1 s2 s3 s4 s5

y1 y2 y3 y4 y5

x0 x1 x2 x3 x4

<S> the cat is on

Fixed width sliding window of lenth L

Seq(x1, . . . , xi−1) = Seq(xi−L, . . . , xi−1)

= ReLU(bconv +
L∑
j=1

W conv
: , : ,j · xi−j)
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Convolutional language model

s
(1)
1 s

(1)
2 s

(1)
3 s

(1)
4 s

(1)
5

s
(2)
1 s

(2)
2 s

(2)
3 s

(2)
4 s

(2)
5

y1 y2 y3 y4 y5

x0 x1 x2 x3 x4

<S> the cat is on

Multiple layers increase both depth and window size
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Convolutional language model

pros & cons
pro: training can be parallelized over words

con: strong Markovian independence assumption

extensions [Bai et al., 2018]
residual connections

normalization layers (e.g. batch norm, layer norm)

dilated convolutions
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Recurrent language model [Mikolov et al., 2010]

s1 s2 s3 s4 s5

y1 y2 y3 y4 y5

x0 x1 x2 x3 x4

<S> the cat is on

Recurrent decomposition

Seq(x1, . . . , xi−1) = RNN(Seq(x1, . . . , xi−2), xi−1)

s0 = 0

si = RNN(si−1, xi−1)
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RNN variants

gated units
alternative to plain RNN

sigmoid layers σ act as “gates” that control flow of information

allows passing of information over long time
→ avoids vanishing gradient problem

strong empirical results
popular variants:

Long Short Term Memory (LSTM) (shown)
Gated Recurrent Unit (GRU)

Christopher Olah http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recurrent language model

pros & cons
pro: can capture long distance dependencies

pro: can represent arbitrary FSAs (+ counting)

con: inherently sequential even during training

con: hidden state can become a bottleneck

extensions
stacked depth and transition depth [Miceli Barone et al., 2017]

residual connections

normalization layers (layer norm)

etc.
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Transformer language model [Vaswani et al., 2017]

s1 s2 s3 s4 s5

y1 y2 y3 y4 y5

+ + + + +

x0 x1 x2 x3 x4

<S> the cat is on

Causal self-attention
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Transformer language model

si

yi

+

xi−1. . .x0

wi−1w0

ai,i
a1,i

causal self-attention

ej,i = x†j−1 ·W
K ·WQ · xi−1 (dot product attention)

aj,i = softmax
j≤i

(ej,i)

ci =

i∑
j=1

aj,iW
V · xj−1

si = b(2) +W (2) · ReLU(b(1) +W (1) · ci)

what about word order?
xi = xwordi + xposi
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Transformer language model

si

yi
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Transformer language model

si

yi

+

xi−1. . .x0

wi−1w0

ai,i
a1,i

pi−1p0

transformer in practice

xi = xwordi + xposi (position embedding)

e
(h)
j,i = x†j−1 ·W

Kh ·WQh · xi−1

a
(h)
j,i = softmax

j≤i
(e

(h)
j,i )

c
(h)
i =

i∑
j=1

a
(h)
j,i W

Vh · xj−1

c̃i = concat
h

(c
(h)
i ) (multi-head attention)

ci = layerNorm(xi + c̃i) (residual and layernorm)

s̃i = b(2) +W (2) · ReLU(b(1) +W (1) · ci)
si = layerNorm(ci + s̃i) (residual and layernorm)
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Transformer language model

pros & cons
pro: SOTA on everything

pro: can capture long distance dependencies

pro: training can be parallelized over words
con: theoretical complexity increases at each step

not an issue for single sentences

con: tricky to train
require dropout, learning rate warmup, label smoothing, etc.

extensions
Transformer-XL [Dai et al., 2019]

recurrent over sentences

dynamic convolutions [Wu et al., 2019]

etc.
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Modelling Translation

Suppose that we have:
a source sentence S of length m (x1, . . . , xm)
a target sentence T of length n (y1, . . . , yn)

We can express translation as a probabilistic model

T ∗ = argmax
T

p(T |S)

Expanding using the chain rule gives

p(T |S) = p(y1, . . . , yn|x1, . . . , xm)

=

n∏
i=1

p(yi|y1, . . . , yi−1, x1, . . . , xm)
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Differences Between Translation and Language Model

Target-side language model:

p(T ) =

n∏
i=1

p(yi|y1, . . . , yi−1)

Translation model:

p(T |S) =
n∏
i=1

p(yi|y1, . . . , yi−1, x1, . . . , xm)

We could just treat sentence pair as one long sequence, but:
We do not care about p(S)
We may want different vocabulary, network architecture for source text

→ Use separate neural networks for source and target with an attention
mechanism
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Recurrent Encoder-Decoder with Attention

h1 h2 h3 h4

x1 x2 x3 x4

natürlich hat john spaß

+

s1 s2 s3 s4 s5

y1 y2 y3 y4 y5

of course john has fun

0.7
0.1

0.1
0.1

Decoder

Encoder
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0.1
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Recurrent Attentional encoder-decoder: Maths

encoder

−→
h j =

{
0, , if j = 0

RNN(hj−1, xj) , if j > 0

←−
h j =

{
0, , if j = Tx + 1

RNN(hj+1, xj) , if j ≤ Tx

hj = (
−→
h j ,
←−
h j)
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Recurrent Attentional encoder-decoder: Maths

decoder

si =

{
tanh(Ws

←−
h i), , if i = 0

RNN(si−1, yi−1, ci) , if i > 0

ti = tanh(Uosi +W outEyyi−1 + Coci)

yi = softmax(Voti)

cross-attention

ei,j = h†j ·W
K ·WQ · si−1

ai,j = softmax
j

(ei,j)

ci =

Tx∑
j=1

ai,jW
V · hj
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Attention model

attention model
side effect: we obtain alignment between source and target sentence

information can also flow along recurrent connections, so there is no
guarantee that attention corresponds to alignment
applications:

visualisation
replace unknown words with back-off dictionary [Jean et al., 2015]
...

Kyunghyun Cho
http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/
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Transformer encoder-decoder [Vaswani et al., 2017]

attention is all you need
acausal self-attention in encoder

causal self-attention in decoder

cross-attention between
encoder and decoder
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Application of Encoder-Decoder Model

Scoring (a translation)
p(La, croissance, économique, s’est, ralentie, ces, dernières, années, . |
Economic, growth, has, slowed, down, in, recent, year, .) = ?

Decoding ( a source sentence)
Generate the most probable translation of a source sentence

y∗ = argmaxy p(y|Economic, growth, has, slowed, down, in, recent, year, .)
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Decoding

exact search
generate every possible sentence T in target language

compute score p(T |S) for each

pick best one

intractable: |vocab|N translations for output length N
→ we need approximative search strategy
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Decoding

approximative search/1: greedy search
at each time step, compute probability
distribution P (yi|S, y<i)
select yi according to some heuristic:

sampling: sample from P (yi|S, y<i)
greedy search: pick argmaxy p(yi|S, y<i)

continue until we generate <eos>

! 0.928

0.175

<eos> 0.999

0.175

hello 0.946

0.056

world 0.957

0.100

0

efficient, but suboptimal
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Decoding

approximative search/2: beam
search

maintain list of K hypotheses
(beam)

at each time step, expand each
hypothesis k: p(yki |S, yk<i)
select K hypotheses with
highest total probability:∏

i

p(yki |S, yk<i)

hello 0.946

0.056

world 0.957

0.100

World 0.010

4.632

. 0.030

3.609

! 0.928

0.175

... 0.014

4.384

<eos> 0.999

3.609

world 0.684

5.299

HI 0.007

4.920

<eos> 0.994

4.390

Hey 0.006

5.107

<eos> 0.999

0.175

0

K = 3

relatively efficient . . . beam expansion parallelisable

currently default search strategy in neural machine translation

small beam (K ≈ 10) offers good speed-quality trade-off
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Advanced NMT [Sennrich et al., 2016a]

In order to achieve high quality NMT benefits from specific techniques.
For instance:

Subword models to allow translation of rare/unknown words
→ since networks have small, fixed vocabulary

Back-translated monolingual data as additional training data
→ allows us to make use of extensive monolingual resources

Dropout
→ Improves generalisation performance with small training data

Virtual mini-batching
→ Improves generalization by tuning gradient noise
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Subwords for NMT: Motivation

MT is an open-vocabulary problem
compounding and other productive morphological processes

they charge a carry-on bag fee.
sie erheben eine Hand|gepäck|gebühr.

names

Obama(English; German)
Îáàìà (Russian)
オバマ (o-ba-ma) (Japanese)

technical terms, numbers, etc.

... but Neural MT architectures have small and fixed vocabulary
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Subword units

segmentation algorithms: wishlist
open-vocabulary NMT: encode all words through small vocabulary

encoding generalizes to unseen words

small text size

good translation quality
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Byte pair encoding for word segmentation
[Sennrich et al., 2016c]

bottom-up character merging
starting point: character-level representation
→ computationally expensive

compress representation based on information theory
→ byte pair encoding [Gage, 1994]

repeatedly replace most frequent symbol pair (’A’,’B’) with ’AB’

hyperparameter: when to stop
→ controls vocabulary size

word freq
’l o w </w>’ 5
’l o w e r </w>’ 2
’n e w e s t </w>’ 6
’w i d e s t </w>’ 3

vocabulary:
l o w </w> e r n s t i d

es est est</w> lo low
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Byte pair encoding for word segmentation

why BPE?
open-vocabulary:
operations learned on training set can be applied to unknown words

compression of frequent character sequences improves efficiency
→ trade-off between text length and vocabulary size

’l o w e s t </w>’

e s → es
es t → est
est </w> → est</w>
l o → lo
lo w → low
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Byte pair encoding for word segmentation

why BPE?
open-vocabulary:
operations learned on training set can be applied to unknown words

compression of frequent character sequences improves efficiency
→ trade-off between text length and vocabulary size
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Evaluation: data and methods

data
WMT 15 English→German and English→Russian

model
attentional encoder–decoder neural network

parameters and settings as in [Bahdanau et al, 2014]
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Subword NMT: Translation Quality

EN-DE EN-RU
0.0

10.0

20.0

24.4 24.3

22.0

19.1

22.8
20.9

22.8

20.4
B

LE
U

SMT [Sennrich and Haddow, 2015, Haddow et al., 2015]
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Examples

system sentence
source health research institutes
reference Gesundheitsforschungsinstitute
word-level (with back-off) Forschungsinstitute
character bigrams Fo|rs|ch|un|gs|in|st|it|ut|io|ne|n
BPE Gesundheits|forsch|ungsin|stitute
source rakfisk
reference ðàêôèñêà (rakfiska)
word-level (with back-off) rakfisk → UNK→ rakfisk
character bigrams ra|kf|is|k→ ðà|êô|èñ|ê (ra|kf|is|k)
BPE rak|f|isk → ðàê|ô|èñêà (rak|f|iska)
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BPE in practice

Use Joint BPE for same script languages
Just concatenate source and target, then train
Named-entities are split consistently

merge operations: 30,000 - 80,000

for low resource, frequency threshold: 10 [Sennrich and Zhang, 2019]

Transliterate when scripts are different
E.g. ISO-9 transliteration for Russian:

transliterate Russian corpus into Latin script
learn BPE operations on concatenation of English and transliterated
Russian corpus
transliterate BPE operations into Cyrillic
for Russian, apply both Cyrillic and Latin BPE operations
→ concatenate BPE files

Code available: https://github.com/rsennrich/subword-nmt
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Monolingual Data in NMT

Why Monolingual Data for NMT?
more training data

more appropriate training data (domain adaptation)
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Monolingual Data in NMT

encoder-decoder already conditions on
previous target words

no architecture change required to learn
from monolingual data
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Monolingual Training Instances

Output prediction
p(yi) is a function of hidden state si, previous output yi−1, and source
context vector ci
only difference to monolingual RNN: ci

Problem
we have no source context ci for monolingual training instances

Solution: Backtranslation [Sennrich et al., 2016b]
1 train a system in the reverse direction (Tgt→Src)
2 translate target-language data to create a syntetic source Src’
3 flip the direction of the syntetic parallel corpus: Src’→Tgt
4 merge with the true parallel data and train a Src→Tgt system
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Monolingual Training Instances

Backtranslation
1-1 mix of parallel and monolingual training instances

oversample parallel data if needed

randomly sample from back-translated data
training does not distinguish between real and synthetic parallel data

actually, it’s better if it does [Caswell et al., 2019]
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Why is monolingual data helpful?

Domain adaptation effect

Reduces over-fitting

Improves fluency

Additional techniques: copied monolingual data [Currey et al., 2017]
improves named entities accuracy
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Dropout

[Gal, 2015]

Dropout (randomly zeroing activations in training) prevents overfitting

For RNNs repeat mask across timesteps [Gal, 2015]

Necessary for English↔Romanian (0.6M sentences)

Masks of 0.1-0.2 provide gain of 4-5 BLEU
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Neural Machine Translation

1 Introduction: Language Modeling with Neural
Networks

2 Neural Machine Translation

3 Advanced NMT

4 Multi-lingual NMT

5 Resources, Further Reading and Wrap-Up
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Multi-lingual NMT

Why multilinguality?
NMT models are usually trained on language pairs
If we have N languages this implies N2 models

poor scaling

what if we have little or no parallel data for some pair?
e.g. little Cs↔Zh data, but plenty of Cs↔En and En↔Zh

Multi-lingual translation
single model for multiple languages pairs
we’d like to transfer training information between pairs

ideally, zero-shot translation
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Multi-lingual NMT

Multi-lingual NMT techniques
universal models

direct pivoting

backtranslation pivoting
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Universal models [Ha et al., 2016]

model trained on multiple language pairs
NMT models easily support multiple source languages

e.g. we want De→En and Fr→En
just mix the training corpora

for multiple target languages append a tag
on the source side [Ha et al., 2016, Johnson et al., 2017]
or on the target side with forced decoding [Firat et al., 2016]

pros & cons
pro: works well on related languages

pro: can be finetuned on parallel data
con: inefficient for distant languages and/or different scripts

transliteration might help

con: training set balancing issues
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Direct pivoting

concatenate two models
often one language (e.g. En) is strongly over-represented in the
training data
use it as a pivot language

e.g. we want Cs→Zh
train Cs→En and En→Zh and concatenate them

pros & cons
pro: models can be optimized separately

pro: allows language-specific pre- and post-processing

pro: no negative interference between distant languages pairs

con: can’t use parallel data

con: final system is more cumbersome
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Backtranslation pivoting [Bawden et al., 2019]

pivot during training using backtraslations
Example

we want En→Gu
we have little En↔Gu data, but plenty of En↔Hi and Hi↔Gu

1 train Hi→En
2 translate the Hi side of the the Hi↔Gu corpus to synthetic En’
3 pair back the original Gu to En’ and flip it around to obtain En’↔Gu
4 merge with the true parallel data and train En→Gu
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3 pair back the original Gu to En’ and flip it around to obtain En’↔Gu
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pros & cons
pro: can use parallel and monolingual data

pro: no negative interference between distant languages pairs

pro: simple final system
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Backtranslation pivoting [Bawden et al., 2019]

pivot during training using backtraslations
Example

we want En→Gu
we have little En↔Gu data, but plenty of En↔Hi and Hi↔Gu

1 train Hi→En
2 translate the Hi side of the the Hi↔Gu corpus to synthetic En’
3 pair back the original Gu to En’ and flip it around to obtain En’↔Gu
4 merge with the true parallel data and train En→Gu

WMT 2019
we used this setup for the Edinburgh’s submission to WMT 2019

+ transliteration of Hi to Gu and semi-supervised training
human evaluation results

En→Gu: first place
Gu→En: second place
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Neural Machine Translation

1 Introduction: Language Modeling with Neural
Networks

2 Neural Machine Translation

3 Advanced NMT

4 Multi-lingual NMT

5 Resources, Further Reading and Wrap-Up
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Getting Started: Do it Yourself

sample files and instructions for training NMT model
https://github.com/EdinburghNLP/wmt17-scripts

https:

//github.com/EdinburghNLP/wmt17-transformer-scripts

pre-trained models to test decoding (and for further experiments)
http://statmt.org/rsennrich/wmt16_systems/
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(A small selection of) Resources

NMT tools
Nematus (TensorFlow) https://github.com/EdinburghNLP/nematus

Marian (C++/CUDA) https://github.com/marian-nmt/marian-dev

Tensor2Tensor (TensorFlow) https://github.com/tensorflow/tensor2tensor

Fairseq (PyTorch) https://github.com/pytorch/fairseq

XLM (PyTorch) https://github.com/facebookresearch/XLM

...and many more https://github.com/jonsafari/nmt-list
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Further Reading

secondary literature
lecture notes by Kyunghyun Cho: [Cho, 2015]

chapter on Neural Network Models in “Statistical Machine Translation”
by Philipp Koehn http://mt-class.org/jhu/assets/papers/neural-network-models.pdf

tutorial on sequence-to-sequence models by Graham Neubig
https://arxiv.org/abs/1703.01619

The Illustrated Transformer http://jalammar.github.io/illustrated-transformer/

Miceli Barone Neural Machine Translation 54 / 56

http://mt-class.org/jhu/assets/papers/neural-network-models.pdf
https://arxiv.org/abs/1703.01619
http://jalammar.github.io/illustrated-transformer/


Acknowledgments
These slides have been adapted from a previous tutorial by Rico
Sennrich and Barry Haddow

Miceli Barone Neural Machine Translation 55 / 56



Questions

Thank you!
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