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MT is important

• 50 of the top 100 language service providers (Common Sense 
Advisory 2016)
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Why do we need evaluation?

• Evaluation provide data on whether a system works and 
why, which parts of it are effective and which need 
improvement.

• Evaluation needs to be honest and replicable, and its 
methods should be as rigorous as possible.
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Why do we need evaluation? A bit of history…

• ALPAC Report (1964)

• Generated a long and drastic cut in funding 
(especially in MT)

• Evaluation was a forbidden topic in the NLP 
community (Paroubek et al 2007)
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First question: what is quality?

➢ Evaluation is a complex problem

• What does quality mean? 

• Fluent? Adequate? Both? Easy to post-edit? Usable? 
All of them? None of them?
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Quality for whom/what? 

• Why are you evaluating the MT system?

• End-user (gisting vs dissemination) 

• Post-editor (light vs full post-editing) 

• Other applications (e.g. Cross Lingual IR) 

• MT-system (tuning or diagnosis for improvement)
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Quality for whom/what? 

• Why are you evaluating the MT system?

• End-user (gisting vs dissemination) 

• Post-editor (light vs heavy post-editing) 

• Other applications (e.g. CLIR) 

• MT-system (tuning or diagnosis for improvement)
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How to evaluate MT?

➢A few methods 

• Automatic evaluation

• Automatic evaluation metric (AEMs)

• Automatic classifications

• Human Evaluation

• Human evaluation metrics (HEMs)

• Professional translators/bilinguals/crowd

• User Evaluation

• Usability, reading comprehension (UEMs)
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How to evaluate MT?

• Quality Assessment tools (QA)

• (Semi)automatic

• Heavily (still) applied in industry

• Quality Estimation (QE) 

• “Not really evaluation”

• reference translation is not available
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Translation Evaluation Flowchart

Moorkens, J., Castilho, S., Gaspari, F., Doherty, S (Ed.). (2018) Translation 
Quality Assessment: From Principles to Practice. Heidelberg: Springer.
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Automatic Evaluation Metrics (AEMs)

➢ Interdisciplinary

• WER (speech recognition – MT)

• ROUGE (text summarization – MT)

• F-Measure (IR – many other areas)
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Automatic Evaluation Metrics (AEMs)

What is an AEM? 

• a computer program: 

• input: translation output and reference 
translation(s) 

• output: a numerical score related to their similarity
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Automatic Evaluation Metrics (AEMs)

What is an AEM? 

• a computer program: 

• input: translation output and reference 
translation(s) 

• output: a numerical score related to their similarity

• Evaluation without references => Quality Estimation

• usual methods for comparison 

• n-gram matching 

• F-scores, BLEU, METEOR 

• edit (Levenshtein) distance 

• WER, (H)TER
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AEMs based on n-gram matching

• BLEU 

• geometric mean of 1-, 2-, 3- and 4-grams 

• precision + brevity penalty instead of recall (for 
penalising too short segments) 

• METEOR 

• flexible unigram recall 

• does not penalise (too hard) common stems, 
synonyms and paraphrases 
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AEMs based on Character level

take into account characters instead/in addition to words 

ref I t w i l l b e a s o r t o f b r i d g e . 

mt I t w i l l s o r t o f b r i d g e b e . 

Metrics

• chrF: character n-gram F-score possibly extended by 
word 1-grams and 2-grams

• characTER: character based extended edit distance TER 
unmatched words are compared on character level 

• BEER: combination of word n-grams, character n-grams, 
word order permutations
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AEMs based on Edit (Levenshtein) distance 

Minimum number of edits to transform translation output 
to the reference translation 

edit types: 

• substitution: replace one word with another 

• deletion: a word is missing, it should be added 

• insertion: a word is inserted, it should be removed

Metrics

• Word Error Rate (WER) – normalised Levenshtein
distance

• Translation Edit Rate (TER) (Snover et al, 2006)  – WER 
extended by block shift (reordering) cost 
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AEMs based on Edit distance - TER

• TER – Translation Edit Rate – and HTER – Human-targeted edit 
rate

- TER uses the MT as the hypothesis and the HT as reference

- The higher the score, the higher number of edits for the 
MT to come closer to the HT

- HTER  can have hypothesis and reference interchanged (Do 
Carmo 2019):

- The higher the score, the more edits performed by the 
translator

- MT hypothesis and PE reference: Shows the error in the 
MT

- PE hypothesis  and MT reference: Shows the edits 
performed by the translator
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AEMs based on Edit distance - HTER

HTER  can have hypothesis and reference interchanged:

• MT hypothesis and PE reference (error in MT):

• Insertion, Deletion, Substitution, Shift

• PE hypothesis  and MT reference (edits in PE): 

• Deletion, Insertion, Substitution, Shift
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Other AEMs

variations and combinations (word and character 
level, n-grams and edit distances, evaluating on POS 
tags, morphemes, discourse markers, etc.) 

Keep an eye for the WMT Shared task metrics!1

1 http://www.statmt.org/wmt19/metrics-task.html

http://www.statmt.org/wmt19/metrics-task.html
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What about Quality Estimation (QE)?

• Not a measure of quality: no comparison against a 
reference

• Provides an estimate on the quality of translations 
on the fly

Quality is data driven: 

• Can the translation be published as it is? 

• Can a reader get the gist? 

• Is it worth post-editing it? 

• How much effort to fix it?

(Specia, 2016)
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What about Quality Estimation (QE)?

• Features extracted from examples of translation and 
source

• Source -> complexity features (i.e. how hard it is 
to translate?):  sentence length, common words  
(frequency of words)

• Translation-> fluency features:  grammatical (i.e. 
grammar checker), sequence of words

• Source+ translation -> adequacy features (i.e. 
difference in length)

• PEs and human annotated data can also be used
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What about Quality Estimation (QE)?

• Features can be tailored and extracted depending 
on the definition of quality

• How much effort to fix the translation?

• PE time

• Can the translation be published as it is?

• Adequacy, fluency scores

• Can a reader get the gist? 

• General adequacy, fluency from sample 
translations
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Automatic Metrics: Pros and Cons

•Time efficient

•Inexpensive

•Consistent

But…

Exactly matches are not a good way to evaluate:

• many ways to translate the meaning of the source text

• AEMs would need many different reference 
translations for the same source text 

• AEMs don’t tell us *what* is happening 

• do not give any details about actual translation 
errors
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Automatic Metrics: Pros and Cons

What overall evaluation scores cannot answer? 

• What is a particular strength/weakness of the system? 

• What does a certain modification of a system improve 
exactly? 

• Does a worse-ranked system outperform a better-
ranked one in any aspect? 

Deeper analysis is needed!
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Human Translation Quality Assessment (TQA)

- Why evaluate machine translation with humans? 

- More detailed evaluation

- Assess complex linguistic phenomena

- Deeper analysis of system’s performance

- Feedback to the MT system

- Diagnosis

Human Evaluation is essential because it avoids things 
like…
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The hype
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(Philipp Koehn, Omniscien Webinar 2017)
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Human Translation Quality Assessment (TQA) 

• most common metrics (Castilho et al 2018):

• Adequacy and fluency, 

• Error classification

• Post-editing

• Ranking

• secondary measures are: readability, comprehensibility, 
usability, acceptability of source and target texts. 

• carried out by professional and amateur evaluators.

• performance-based measures and user-centred 
approaches are more recent additions.
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Ranking 

▪ Compares two or more translations 

▪ Comparison can be between translation from 
different systems or human translation 

▪ Draws may or not be allowed 

▪ May also be divided into “equally good” or 
“equally bad” 
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Ranking

▪ evaluation:

“which of these translations are better?” or “ choose 
your preferred translation”
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Why is ranking useful for MTEval?

▪ It tells us whether the assessed system is 
improving compared to the baseline (diagnosis 
evaluation)

▪ It tells us which system is more suitable for a 
specific project  

Ranking
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Adequacy

▪ also known as “accuracy” or “fidelity” 

▪ Focus on the source text

▪ “the extent to which the translation transfers the 
meaning of the source text translation unit into the 
target”

▪ Likert scale: 

1. None of it

2. Little of it 

3. Most of it

4. All of it
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Adequacy

▪ Why is Adequacy useful for MT evaluation?

▪ It tells us how much of the source message has 
been transferred to the translation

▪ Sometimes you are only interest in the meaning 
of the source sentence
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Fluency

▪ also known as intelligibility

▪ focuses on the target text 

▪ “the flow and naturalness of the target text unit in 
the context of the target audience and its linguistic 
and sociocultural norms in the given context”

▪ Likert scale:   

1.No fluency

2.Little fluency

3.Near native

4.Native
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Fluency

▪ Why is Fluency useful for MT evaluation?

▪ It tells if the message is fluent/intelligible (i.e. 
sounds natural to a native speaker) or if it is 
“broken language”. 
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Adequacy-Fluency

▪ Adequacy and Fluency generally go together

▪ But sometimes you may want to prioritise one 
over the other

▪ Technical documentation may require 
more adequacy
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Pos-editing (PE)

▪ The “term used for the correction of machine 
translation output by human linguists/editors” 
(Veale and Way 1997)

▪ “checking, proof-reading and revising translations 
carried out by any kind of translating automaton”. 
(Gouadec 2007)

▪ Common use of MT in production – over 80% of 
Language Service Providers now offer post-edited 
MT (Common Sense Advisory 2016)
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Light Post-Editing Full Post-Editing 

Essential corrections only More corrections leading to higher 
quality

Quick turn-around Slower Turn-around 

General texts that are needed 
urgently

Aim at general audience 
(dissemination, outbound)

Internal and perishable use Texts that corresponds to human 
quality

Correct blatant errors without 
considering style

Not only blatant errors, but all 
errors and style

Types: emails, reports, meeting 
agendas, technical reports, user 
forums, chat-rooms

Types: material to be published, 
software, technical documentation 

Light Post-editing vs Full Post-editing
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➢ Is this distinction really useful for a translator?

“Light PE does not exist”

➢Guidelines are essential

• TAUS PE guidelines

Light Post-editing vs Full Post-editing
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Measurement of PE effort

From Krings’ book Repairing Texts (2001)

• Temporal effort

• Throughput, the amount of time spent post-
editing

• Often expressed in words/second

• For MT Eval – faster better means better MT 
output?

• productivity
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Measurement of PE effort

• Technical effort

• The number of edit operations made

• Often approximated using hTER automatic metric

• For MTEval – fewer edits mean better MT

• Correlates with time effort = productivity

• HTER 

• PE as reference

• PE as hypothesis
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Measurement of PE effort

• Cognitive effort

• May be measured in several ways

• In DCU we often use eye-tracking

• For MT Eval – less cognitive effort means better 
MT output

• Cognitive effort has been correlated to other 
HEMs
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PE

- Why use post-editing for Machine Translation 
evaluation? 

- Assess usefulness of MT system in production

- Identify common errors

- Create new training or test data

- However, measurements of post-editing effort tend 
to differ between novice (students) and 
professionals, and crowd and professionals
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PET  (Aziz, Castilho and Specia 2012)

CASMACAT (Alabau et al. 2013)

MATECAT (Federico et al. 2014)

Appraise (Federman, 2012)

Tools for PE
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Error Classification

➢ Identify  and classify errors in a translated text

➢A few taxonomies have been proposed

• Vilar et al. (2006)

• Llitjós et al. (2005).

• Federico et al. (2014)

• Costa et al. (2015)

• DQF – TAUS 

• MQM – QT212

• Harmonized
2 http://www.qt21.eu/mqm-definition/definition-2015-
12-30.html

http://www.qt21.eu/mqm-definition/definition-2015-12-30.html
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DQF / Multidimensional Quality Metrics
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Error Classification

- Why use error taxonomies for translation 
evaluation? 

- Identify types of errors in MT or human 
translation

- Detailed error report is useful for adjusting MT 
systems, reporting back to clients

- LSPs use taxonomies and severity ratings to 
monitor translators’ work
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Error Classification

- More possible analyses:

- relations between particular error types and 
user/post-editor preferences 

- the impact of different error types on different 
aspects of post-editing effort

- However, error annotation is expensive

• Automatic Error Classification has been Proposed 
(See Popovic 2018)
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DQF / MQM Example

ST: Quando você faz avaliação humana dos sistemas, é mais 
provável que os seus resultados tenham mais peso. 

MT: When you make human systems evaluation, it is more 
likely that the your results will have much more weight.

HT: When you do human evaluation of the systems, it is 
more likely that your results will have more credibility. 

Errors:

- Word order - Extraneous function word

- Mistranslation - Addition

- Literal Translation - Missing
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Inter-annotator agreement (IAA)

Necessary because human annotation/evaluation is:

• Subjective 

• Prone to errors (fatigue)

• Biased  (preference for a label)

• Based on human-written guidelines  (misinterpreted)
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Inter-annotator agreement (IAA)

Results can:

• Identify improvements needed in annotation 
scheme

• Indicate usefulness of data

• Indicate replicability of data (e.g. clinical diagnoses)

Most used coefficient:

• Cohen’s Kappa (weighted and non-weighted)

• Fleiss’ Kappa 

The ultimate goal is to identify and solve disagreements 
to have a more homogenous annotation
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Usability

▪ Concept borrowed for human-computer interaction

▪ Real world problems

▪ Understand how end users engage with machine-
translated texts or how usable such texts are. 

▪ Applied for different areas (video/text
summarisation, UI, information retrieval, etc.). 
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Usability

▪ Why is  Usability useful for MT evaluation? 

▪ identify what impact the translation might have on 
the final readers of the translation, including their 
satisfaction with the translation and products.

▪ The users of the translation should be the ones 
who tell us if the final translation is acceptable
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Challenge Test Set – Test Suites

“A challenge test set is a representative set of isolated or in-
context sentences, each hand or (semi)automatically

designed to evaluate a system’s capacity to translate a specific 
linguistic phenomenon” 

Generally:

it must concentrate on specific phenomena

it should represent well these phenomena

it should be of reasonable size

it should enable a straightforward evaluation

the phenomena are usually linguistically motivated

• Popovic and Castilho 2019. CTS MTSummit tutorial (see 

https://sites.google.com/view/challenge-test-sets-tutorial/home )

https://sites.google.com/view/challenge-test-sets-tutorial/home
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Challenge Test Set – Test Suites

• since 2015: revived in order to obtain more fine-grained 
qualitative observations about MT systems

• since 2017: expanded with the emergence of neural 
systems

• since 2018: "Additional Test Suites in News Translation 
Task“ at WMT
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Challenge Test Set – Test Suites

An additional test  - and it would not be difficult to prepare – would make 
the results stronger.

And now something completely different!

I’m a great actor, and you’re a cheap producer.

Cathy thought she was going to win, and you pushed her.

Chris planned this trick and you carried it through.

Come to us not as a guest, but as a brother.

Convicted not of arson, but of some minor transgression.

Crime is not the reason but the consequence.

Don’t talk, but do it now.

• Creation and Evaluation

• (semi) automatic, manual 
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Further Developments

Human parity? What is it?

Hassan et al. (2018) 

• Definition 1. If a bilingual human judges the quality 
of a candidate translation produced by a human to 
be equivalent to one produced by a machine, then 
the machine has achieved human parity. 
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Further Developments

• Definition 2. If there is no statistically significant 
difference between human quality scores for a test 
set of candidate translations from a machine 
translation system and the scores for the 
corresponding human translations then the machine 
has achieved human parity
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Human Parity? Let’s look at it a little bit closer

1. Toral, Castilho, Hu and Way (2018):

a) Professionals vs bilinguals vs crowd

Why an issue:

non-expert evaluators lack knowledge of translation 
and might not be able to notice subtle differences that 
make one translation better than another (Castilho et 
al., 2017) 

.
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b) Sentences were evaluated in isolation

Why an issue:

There are referential relations that go beyond the 
sentence level (Voigt and Jurafsky, 2012). These are 
disregarded in the evaluation.
.

Favouring MT? 

Their MT system does not take into account 
intersentential context while human translators do. 

Human Parity? Let’s look at it a little bit closer
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Human Parity Disproved

Toral, Castilho, Hu and Way (2018):

• Translationese: if removed, evidence that human 
parity has not been achieved

• Professional translators: wider gap between HT and 
MT and higher IAA  

• Quality of human references: issues seem to 
indicate that they were produced by non-expert 
translators and possibly post-edited

Laubli, Sennrich and Volk (2018): 

• Context: stronger preference for human over MT 
when evaluating documents (vs isolated sentences)
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Document-level Evaluation – next step!

WMT 2019 –

Direct Assessments (accuracy) with bilinguals for 
document level

Loads we don’t know:

• how much context span is a “document level”

• effort to rate a whole document

• how to annotate errors in a doc-level evaluation
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MTEval is essential

▪ AEM

▪ Time efficient

▪ Inexpensive

But no deep linguistic phenomena can be assessed 
(yet?), needs multiple human references to be less unfair

▪ HEMs 

Can be expensive and time consuming

▪ Assess linguistic phenomena

▪ Feedback to the MT systems

▪ Tell us what end users can/cannot do with the 
translation
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Human Evaluation is not going anywhere

▪ Human evaluation avoids awkward situations…

▪ Hype

▪ And back up good results! 
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